E. Lander, L. Linton, and B. Birren, Initial sequencing and analysis of the human genome, Nature, vol.6, issue.6822, pp.860-921, 2001.
DOI : 10.1089/cmb.1999.6.91

F. Collins and H. Varmus, A New Initiative on Precision Medicine, New England Journal of Medicine, vol.372, issue.9, pp.793-798, 2015.
DOI : 10.1056/NEJMp1500523

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101938

S. Lista, Z. Khachaturian, D. Rujescu, F. Garaci, B. Dubois et al., Application of Systems Theory in Longitudinal Studies on the Origin and Progression of Alzheimer???s Disease, Methods Mol Biol, vol.1303, pp.49-67, 2016.
DOI : 10.1007/978-1-4939-2627-5_2

H. Hampel, S. Lista, and Z. Khachaturian, Development of biomarkers to chart all Alzheimer???s disease stages: The??royal road to cutting the therapeutic Gordian Knot, Alzheimer's & Dementia, vol.8, issue.4, pp.312-348, 2012.
DOI : 10.1016/j.jalz.2012.05.2116

A. Alzheimer, Über einen eigenartigen schweren. Erkrankungsprozeß der Hirnrinde, Neurologisches Centralblatt, vol.23, pp.1129-1165, 1906.

J. Kang, H. Lemaire, and A. Unterbeck, The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor, Nature, vol.325, issue.6106, pp.733-739, 1987.
DOI : 10.1038/325733a0

D. Games, D. Adams, and R. Alessandrini, Alzheimer-type neuropathology in transgenic mice overexpressing V717F ??-amyloid precursor protein, Nature, vol.373, issue.6514, pp.523-530, 1995.
DOI : 10.1038/373523a0

D. Schenk, R. Barbour, and W. Dunn, Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse, Nature, vol.400, issue.6740, pp.173-180, 1999.
DOI : 10.1038/22124

J. Hardy and G. Higgins, Alzheimer's disease: the amyloid cascade hypothesis, Science, vol.256, issue.5054, pp.184-189, 1992.
DOI : 10.1126/science.1566067

W. Van-der-flier, Clinical heterogeneity in familial Alzheimer???s disease, The Lancet Neurology, vol.15, issue.13, pp.10-1016, 2016.
DOI : 10.1016/S1474-4422(16)30275-7

E. Portelius, U. Andreasson, and J. Ringman, Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease, Mol Neurodegener, vol.5, issue.2, 2010.
DOI : 10.1186/1750-1326-5-2

URL : http://doi.org/10.1186/1750-1326-5-2

E. Younesi and M. Hofmann-apitius, From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine, EPMA Journal, vol.3, issue.1, p.23, 2013.
DOI : 10.1186/1878-5085-3-14

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125844

H. Hampel, O. Bryant, S. Castrillo, and J. , PRECISION MEDICINE -The Golden Gate for Detection, Treatment and Prevention of Alzheimer's Disease, J Prev Alz Dis, 2016.

Z. Khachaturian and A. Khachaturian, The Paradox of Research on

B. Dubois, H. Feldman, and C. Jacova, Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria, The Lancet Neurology, vol.13, issue.6, pp.614-643, 2014.
DOI : 10.1016/S1474-4422(14)70090-0

H. Hampel, S. Lista, and S. Teipel, Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: A long-range point of view beyond 2020, Biochemical Pharmacology, vol.88, issue.4, pp.426-475, 2014.
DOI : 10.1016/j.bcp.2013.11.009

H. Hampel and S. Lista, Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement, The journal of nutrition, health & aging, vol.337, issue.1, pp.54-63, 2013.
DOI : 10.1126/science.337.6096.790

H. Hampel and S. Lista, Alzheimer disease: From inherited to sporadic AD???crossing the biomarker bridge, Nature Reviews Neurology, vol.9, issue.11, pp.598-600, 2012.
DOI : 10.1038/nrd3115

T. Zetzsche, D. Rujescu, J. Hardy, and H. Hampel, Advances and perspectives from genetic research: development of biological markers in Alzheimer???s disease, Expert Review of Molecular Diagnostics, vol.15, issue.5, pp.667-690, 2010.
DOI : 10.1111/j.1755-5949.2009.00104.x

S. Lista, F. Garaci, N. Toschi, and H. Hampel, Imaging Epigenetics in Alzheimer???s Disease, Current Pharmaceutical Design, vol.19, issue.36
DOI : 10.2174/13816128113199990370

S. Lista, O. Bryant, S. Blennow, and K. , Biomarkers in Sporadic and Familial Alzheimer???s Disease, Journal of Alzheimer's Disease, vol.6, issue.102, pp.291-317, 2015.
DOI : 10.1126/scitranslmed.3007941

C. 23-rosen, O. Hansson, K. Blennow, H. Zetterberg, H. Zetterberg et al., Fluid biomarkers in Alzheimer's disease -current concepts Fluid biomarkers in Alzheimer disease Cerebrospinal fluid and plasma biomarkers in Alzheimer disease, Mol Neurodegener Cold Spring Harb Perspect Med Nat Rev Neurol, vol.826, pp.131-175, 2010.

H. Hampel, Y. Shen, and D. Walsh, Biological markers of amyloid ??-related mechanisms in Alzheimer's disease, Experimental Neurology, vol.223, issue.2, pp.334-380, 2010.
DOI : 10.1016/j.expneurol.2009.09.024

H. Hampel, K. Blennow, L. Shaw, Y. Hoessler, H. Zetterberg et al., Total and phosphorylated tau protein as biological markers of Alzheimer???s disease, Experimental Gerontology, vol.45, issue.1, pp.30-40, 2010.
DOI : 10.1016/j.exger.2009.10.010

O. Bryant, S. Lista, S. Rissman, and R. , Comparing biological markers of Alzheimer's disease across blood fraction and platforms: Comparing apples to oranges Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer's disease research, Alzheimers Dement (Amst) Alzheimers Dement, vol.311, issue.29, pp.27-34549, 2015.

K. Henriksen, O. Bryant, S. Hampel, and H. , The future of blood-based biomarkers for Alzheimer's disease, Alzheimer's & Dementia, vol.10, issue.1, pp.115-146, 2014.
DOI : 10.1016/j.jalz.2013.01.013

H. Snyder, M. Carrillo, and F. Grodstein, Developing novel blood-based biomarkers for Alzheimer's disease, Alzheimer's & Dementia, vol.10, issue.1, pp.109-123, 2014.
DOI : 10.1016/j.jalz.2013.10.007

V. Gupta, R. Sundaram, and R. Martins, Multiplex biomarkers in blood, Alzheimer's Research & Therapy, vol.5, issue.3, p.31, 2013.
DOI : 10.1373/clinchem.2005.053090

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707019

S. Teipel, M. Grothe, S. Lista, N. Toschi, F. Garaci et al., Relevance of Magnetic Resonance Imaging for Early Detection and Diagnosis of Alzheimer Disease, Medical Clinics of North America, vol.97, issue.3, pp.399-424, 2013.
DOI : 10.1016/j.mcna.2012.12.013

M. Ewers, R. Sperling, W. Klunk, M. Weiner, and H. Hampel, Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia, Trends in Neurosciences, vol.34, issue.8, pp.430-472, 2011.
DOI : 10.1016/j.tins.2011.05.005

S. Lista, F. Garaci, and M. Ewers, CSF A??1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer's disease, Alzheimer's & Dementia, vol.10, issue.3, pp.381-92, 2014.
DOI : 10.1016/j.jalz.2013.04.506

K. Hansen, Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage, Front Aging Neurosci, vol.5, p.58, 2013.

C. Stam, Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders, Journal of the Neurological Sciences, vol.289, issue.1-2, pp.128-162, 2010.
DOI : 10.1016/j.jns.2009.08.028

J. Jørgensen, Companion diagnostics: the key to personalized medicine, Expert Review of Molecular Diagnostics, vol.8, issue.2, pp.153-159, 2015.
DOI : 10.1586/14737159.8.6.689

G. Lyman and H. Moses, Biomarker Tests for Molecularly Targeted Therapies ??? The Key to Unlocking Precision Medicine, New England Journal of Medicine, vol.375, issue.1, pp.4-6, 2016.
DOI : 10.1056/NEJMp1604033

R. Doody, R. Raman, and M. Farlow, A Phase 3 Trial of Semagacestat for Treatment of Alzheimer's Disease, New England Journal of Medicine, vol.369, issue.4, pp.341-50, 2013.
DOI : 10.1056/NEJMoa1210951

S. Salloway, R. Sperling, and N. Fox, Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer's Disease, New England Journal of Medicine, vol.370, issue.4, pp.322-355, 2014.
DOI : 10.1056/NEJMoa1304839

R. Doody, R. Thomas, and M. Farlow, Phase 3 Trials of Solanezumab for Mild-to-Moderate Alzheimer's Disease, New England Journal of Medicine, vol.370, issue.4, pp.311-332, 2014.
DOI : 10.1056/NEJMoa1312889

F. Noorbakhsh, C. Overall, and C. Power, Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology, Trends in Neurosciences, vol.32, issue.2, pp.88-100, 2009.
DOI : 10.1016/j.tins.2008.10.003

J. Castrillo and S. Oliver, Alzheimer???s as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks, 45 FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools, pp.3-48, 2016.
DOI : 10.1007/978-1-4939-2627-5_1

A. Daly, Genome-wide association studies in pharmacogenomics, Bethesda (MD), pp.2016-46241, 2010.
DOI : 10.7326/0003-4819-145-10-200611210-00007

J. Zhang, R. Chiodini, A. Badr, and G. Zhang, The impact of next-generation sequencing on genomics, Journal of Genetics and Genomics, vol.38, issue.3, pp.95-109, 2011.
DOI : 10.1016/j.jgg.2011.02.003

J. Lambert, C. Ibrahim-verbaas, and D. Harold, Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease, Nature Genetics, vol.9, issue.12, pp.1452-1460, 2013.
DOI : 10.1093/bioinformatics/btq419

A. Daly, Pharmacogenetics and human genetic polymorphisms, Biochemical Journal, vol.1770, issue.3, pp.435-484, 2010.
DOI : 10.1097/00130832-200410000-00013

R. Guerreiro, A. Wojtas, and J. Bras, Variants in Alzheimer's Disease, New England Journal of Medicine, vol.368, issue.2, pp.117-144, 2013.
DOI : 10.1056/NEJMoa1211851

A. Brinkmalm, E. Portelius, and A. Öhrfelt, Explorative and targeted neuroproteomics in Alzheimer's disease, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1854, issue.7, pp.769-78, 2015.
DOI : 10.1016/j.bbapap.2015.01.009

T. Veenstra and M. Kim, Neuroproteomic tools for battling Alzheimer's disease Association of blood lipids with Alzheimer's disease: A comprehensive lipidomics analysis, Proteomics Alzheimers Dement, 2016.

E. Trushina and M. Mielke, Recent advances in the application of metabolomics to Alzheimer's Disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1842, issue.8, pp.1232-1241, 2014.
DOI : 10.1016/j.bbadis.2013.06.014

C. Czech, P. Berndt, and K. Busch, Metabolite Profiling of Alzheimer's Disease Cerebrospinal Fluid, PLoS ONE, vol.6, issue.2, p.31501, 2012.
DOI : 10.1371/journal.pone.0031501.s002

URL : http://doi.org/10.1371/journal.pone.0031501

A. Weston, L. Hood, E. Berg, and E. Kunkel, Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine Systems biology in drug discovery, J Proteome Res Nat Biotechnol, vol.322, pp.179-961253, 2004.

O. Bryant, S. Mielke, M. Rissman, and R. , Blood based biomarkers in Alzheimer's disease: Current state of the science and a novel collaborative paradigm for advancing discovery to clinic In press 60 Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory, Alzheimers Dement N Biotechnol, vol.29, pp.613-637, 2012.

V. Gligorijevi?, N. Malod-dognin, and N. Pr?ulj, Integrative methods for analyzing big data in precision medicine, PROTEOMICS, vol.16, issue.5, pp.741-58, 2016.
DOI : 10.1002/pmic.201500295

M. Beyer and D. Laney, The Importance of 'Big Data': A Definition, 2012.

R. Margolis, L. Derr, and M. Dunn, The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data, Journal of the American Medical Informatics Association, vol.21, issue.6, pp.957-965, 2014.
DOI : 10.1136/amiajnl-2014-002974

H. Geerts, P. Dacks, and V. Devanarayan, Big data to smart data in Alzheimer's disease: The brain health modeling initiative to foster actionable knowledge, Alzheimer's & Dementia, vol.12, issue.9, pp.1014-1035, 2016.
DOI : 10.1016/j.jalz.2016.04.008

M. Haas, D. Stephenson, K. Romero, M. Gordon, N. Zach et al., Big data to smart data in Alzheimer's disease: Real-world examples of advanced modeling and simulation, Alzheimer's & Dementia, vol.12, issue.9, pp.1022-1052, 2016.
DOI : 10.1016/j.jalz.2016.05.005

A. Saykin, L. Shen, and X. Yao, Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans, Alzheimer's & Dementia, vol.11, issue.7, pp.792-814, 2015.
DOI : 10.1016/j.jalz.2015.05.009

I. Choi, T. Kim, M. Kim, S. Mun, and Y. Chung, Perspectives on Clinical Informatics: Integrating Large-Scale Clinical, Genomic, and Health Information for Clinical Care, Genomics & Informatics, vol.11, issue.4, pp.186-90, 2013.
DOI : 10.5808/GI.2013.11.4.186

URL : http://doi.org/10.5808/gi.2013.11.4.186

J. Bai and D. Abernethy, Systems Pharmacology to Predict Drug Toxicity: Integration Across Levels of Biological Organization, Annual Review of Pharmacology and Toxicology, vol.53, issue.1, pp.451-73, 2013.
DOI : 10.1146/annurev-pharmtox-011112-140248

S. Maudsley, B. Martin, and J. Janssens, Informatic deconvolution of biased GPCR signaling mechanisms from in vivo pharmacological experimentation, Methods, vol.92, pp.51-63, 2016.
DOI : 10.1016/j.ymeth.2015.05.013

R. Peck, The right dose for every patient: a key step for precision medicine, Nature Reviews Drug Discovery, vol.52, issue.3, pp.145-151, 2016.
DOI : 10.2165/00003088-200140050-00001

M. Ashburner, C. Ball, and J. Blake, Gene Ontology: tool for the unification of biology, Nature Genetics, vol.9, issue.1, pp.25-34, 2000.
DOI : 10.1091/mbc.9.12.3273

A. Malhotra, E. Younesi, M. Gündel, B. Müller, M. Heneka et al., ADO: A disease ontology representing the domain knowledge specific to Alzheimer's disease, Alzheimer's & Dementia, vol.10, issue.2, pp.238-284, 2014.
DOI : 10.1016/j.jalz.2013.02.009

E. Younesi, A. Malhotra, and M. Gündel, PDON: Parkinson???s disease ontology for representation and modeling of the Parkinson???s disease knowledge domain, Theoretical Biology and Medical Modelling, vol.563, issue.1, p.20, 2015.
DOI : 10.1007/978-1-60761-175-2_12

S. Sahoo, S. Lhatoo, and D. Gupta, Epilepsy and seizure ontology: towards an epilepsy informatics infrastructure for clinical research and patient care, Journal of the American Medical Informatics Association, vol.21, issue.1, pp.82-91, 2014.
DOI : 10.1136/amiajnl-2013-001696

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912711

A. Malhotra, M. Gündel, and A. Rajput, Knowledge retrieval from PubMed abstracts and electronic medical records with the Multiple Sclerosis Ontology Towards a Pathway Inventory of the Human Brain for Modeling Disease Mechanisms Underlying Neurodegeneration, PLoS One J Alzheimers Dis, vol.1052, pp.1343-60, 2015.

S. Mizuno, R. Iijima, and S. Ogishima, AlzPathway: a comprehensive map of signaling pathways of Alzheimer???s disease, BMC Systems Biology, vol.6, issue.1, p.52, 2012.
DOI : 10.1093/bioinformatics/btq675

A. Kodamullil, E. Younesi, M. Naz, S. Bagewadi, and M. Hofmann-apitius, Computable cause-and-effect models of healthy and Alzheimer's disease states and their mechanistic differential analysis, Alzheimer's & Dementia, vol.11, issue.11, pp.1329-1368, 2015.
DOI : 10.1016/j.jalz.2015.02.006

URL : http://doi.org/10.1016/j.jalz.2015.02.006

F. Martin, A. Sewer, M. Talikka, Y. Xiang, J. Hoeng et al., Quantification of biological network perturbations for mechanistic insight and diagnostics using two-layer causal models, BMC Bioinformatics, vol.15, issue.1, p.238, 2014.
DOI : 10.1186/1471-2105-15-238

T. Benzinger, T. Blazey, C. Jack, and . Jr, Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease, Proceedings of the National Academy of Sciences, vol.53, issue.3, pp.4502-4511, 2013.
DOI : 10.2307/2533558

Y. Iturria-medina, R. Sotero, P. Toussaint, J. Mateos-pérez, and A. Evans, Early role of vascular dysregulation on late-onset Alzheimer???s disease based on multifactorial data-driven analysis, Nature Communications, vol.6, p.11934, 2016.
DOI : 10.1016/j.jalz.2010.03.008

M. Donohue, H. Jacqmin-gadda, L. Goff, and M. , Estimating long-term multivariate progression from short-term data, Alzheimer's & Dementia, vol.10, issue.5, pp.400-410, 2014.
DOI : 10.1016/j.jalz.2013.10.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169767

M. Samtani, N. Raghavan, and Y. Shi, Disease progression model in subjects with mild cognitive impairment from the Alzheimer's disease neuroimaging initiative: CSF biomarkers predict population subtypes, British Journal of Clinical Pharmacology, vol.8, issue.1, pp.146-61, 2013.
DOI : 10.1016/j.jalz.2011.07.004

I. Delor, J. Charoin, R. Gieschke, S. Retout, P. Jacqmin et al., Modeling Alzheimer's Disease Progression Using Disease Onset Time and Disease Trajectory Concepts Applied to CDR- SOB Scores From ADNI Alzheimer's Disease Neuroimaging Initiative BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease, e67346 86 Lavielle M. Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools. Series: Chapman & Hall/CRC Biostatistics Series, Boca Raton (FL), pp.78-85, 2013.

S. Durrleman, X. Pennec, A. Trouvé, G. Gerig, and N. Ayache, Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets, Med Image Comput Comput Assist Interv, vol.12, pp.297-304, 2009.
DOI : 10.1007/978-3-642-04268-3_37

URL : https://hal.archives-ouvertes.fr/inria-00408293

S. Durrleman, X. Pennec, A. Trouvé, J. Braga, G. Gerig et al., Toward a Comprehensive Framework for the Spatiotemporal Statistical Analysis of Longitudinal Shape Data, International Journal of Computer Vision, vol.31, issue.3, pp.22-59, 2013.
DOI : 10.1016/j.neuroimage.2006.01.015

URL : https://hal.archives-ouvertes.fr/hal-00813825

H. Fonteijn, M. Modat, and M. Clarkson, An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease, NeuroImage, vol.60, issue.3, pp.1880-1889, 2012.
DOI : 10.1016/j.neuroimage.2012.01.062

B. Jedynak, A. Lang, and B. Liu, A computational neurodegenerative disease progression score: Method and results with the Alzheimer's disease neuroimaging initiative cohort, NeuroImage, vol.63, issue.3, pp.1478-86, 2012.
DOI : 10.1016/j.neuroimage.2012.07.059

J. Schiratti, S. Allassonniere, O. Colliot, and S. Durrleman, Learning spatiotemporal trajectories from manifold-valued longitudinal data, Presented at the Advances in Neural Information Processing Systems, pp.2404-2416, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245909

J. Schiratti, S. Allassonniere, A. Routier, O. Colliot, and S. Durrleman, A mixed-effects model with time reparametrization for longitudinal univariate manifold-valued data, Presented at the 24th International Conference, IPMI 2015 -Information Processing in Medical Imaging, pp.564-75, 2015.
DOI : 10.1007/978-3-319-19992-4_44

URL : https://hal.archives-ouvertes.fr/hal-01163213

M. Hurd, P. Martorell, A. Delavande, K. Mullen, and K. Langa, Monetary Costs of Dementia in the United States, New England Journal of Medicine, vol.368, issue.14, pp.1326-1360, 2013.
DOI : 10.1056/NEJMsa1204629

B. Dubois, H. Hampel, and H. Feldman, Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria, Alzheimer's & Dementia, vol.12, issue.3, pp.292-323, 2016.
DOI : 10.1016/j.jalz.2016.02.002