Scalable Privacy-Preserving Data Mining with Asynchronously Partitioned Datasets

Abstract : In the Naïve Bayes classification problem using a vertically partitioned dataset, the conventional scheme to preserve privacy of each partition uses a secure scalar product and is based on the assumption that the data is synchronised amongst common unique identities. In this paper, we attempt to discard this assumption in order to develop a more efficient and secure scheme to perform classification with minimal disclosure of private data. Our proposed scheme is based on the work by Vaidya and Clifton[1], which uses commutative encryption to perform secure set intersection so that the parties with access to the individual partitions have no knowledge of the intersection. The evaluations presented in this paper are based on experimental results, which show that our proposed protocol scales well with large sparse datasets.
Type de document :
Communication dans un congrès
Jan Camenisch; Simone Fischer-Hübner; Yuko Murayama; Armand Portmann; Carlos Rieder. 26th International Information Security Conference (SEC), Jun 2011, Lucerne, Switzerland. Springer, IFIP Advances in Information and Communication Technology, AICT-354, pp.223-234, 2011, Future Challenges in Security and Privacy for Academia and Industry. 〈10.1007/978-3-642-21424-0_18〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01567594
Contributeur : Hal Ifip <>
Soumis le : lundi 24 juillet 2017 - 10:40:16
Dernière modification le : lundi 24 juillet 2017 - 10:42:15

Fichier

978-3-642-21424-0_18_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Hiroaki Kikuchi, Daisuke Kagawa, Anirban Basu, Kazuhiko Ishii, Masayuki Terada, et al.. Scalable Privacy-Preserving Data Mining with Asynchronously Partitioned Datasets. Jan Camenisch; Simone Fischer-Hübner; Yuko Murayama; Armand Portmann; Carlos Rieder. 26th International Information Security Conference (SEC), Jun 2011, Lucerne, Switzerland. Springer, IFIP Advances in Information and Communication Technology, AICT-354, pp.223-234, 2011, Future Challenges in Security and Privacy for Academia and Industry. 〈10.1007/978-3-642-21424-0_18〉. 〈hal-01567594〉

Partager

Métriques

Consultations de la notice

45

Téléchargements de fichiers

7