N

HAL

open science

iISAM: An iPhone Stealth Airborne Malware

Dimitrios Damopoulos, Georgios Kambourakis, Stefanos Gritzalis

» To cite this version:

Dimitrios Damopoulos, Georgios Kambourakis, Stefanos Gritzalis. iSAM: An iPhone Stealth Airborne
Malware. 26th International Information Security Conference (SEC), Jun 2011, Lucerne, Switzerland.
pp.17-28, 10.1007/978-3-642-21424-0_2 . hal-01567607

HAL Id: hal-01567607
https://inria.hal.science/hal-01567607
Submitted on 24 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01567607
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

iSAM: An iPhone Stealth Airborne Malware

Dimitrios Damopoulos, Georgios Kambourakis, and Stefanos Gritzalis

Info-Sec-Lab Laboratory of Information and Communications Systems Security,
University of the Aegean, Samos, Greece
{ddamop, gkamb, sgritz}Qaegean.gr
http://www.icsd.aegean.gr/info-sec-1lab

Abstract. Modern and powerful mobile devices comprise an attractive
target for any potential intruder or malicious code. The usual goal of an
attack is to acquire users’ sensitive data or compromise the device so as to
use it as a stepping stone (or bot) to unleash a number of attacks to other
targets. In this paper, we focus on the popular iPhone device. We create a
new stealth and airborne malware namely iISAM able to wirelessly infect
and self-propagate to iPhone devices. iSAM incorporates six different
malware mechanisms, and is able to connect back to the iISAM bot master
server to update its programming logic or to obey commands and unleash
a synchronized attack. Our analysis unveils the internal mechanics of
iSAM and discusses the way all iISAM components contribute towards
achieving its goals. Although iSAM has been specifically designed for
iPhone it can be easily modified to attack any iOS-based device.

Keywords: Malware; iPhone; i0S; Jailbreak; Stealth; Airborne; Rootkit.

1 Introduction

Mobile devices have evolved and experienced an immense popularity over the
last few years. These devices have penetrated the market due to the variety
of data services they offer, such as texting, emailing, browsing the Internet,
documents editing, listening to music, watching videos and playing games in
addition to the traditional voice services. As a result, analysts are expecting a
mobile device population of 5 billion by 2015 [1]. Moreover, these devices are
capable of performing sophisticated tasks and communicating through various
wireless interfaces. As mobile devices hardware functionality and performance
get improved, Operating Systems (OS) have similarly evolved. Modern mobile
devices run sophisticated OS like Google Android, Apple i0S, Symbian, Palm
0OS, Blackberry RIM, Windows Mobile 7, that need to confront almost the same
risks as desktop computers. It is thus apparent that this growth has exposed
mobile devices to an increasing number of security threats. According to Chow
and Jones [2], the only difference between desktop computers and mobile devices
in terms of security risk is the challenge to understand the inner workings of the
OS on different hardware processor architectures.

Very recently, Kaspersky Lab identified 39 new mobile malware families (SMS
trojans, iPhone malware, Android spyware) with 143 variants [3] which try to

2 D. Damopoulos et al. iISAM: An iPhone Stealth Airborne Malware

compromise mobile device security. Also, according to a ScanSafe report, mal-
ware volume grew 300% in 2008, and it is noted that several of the legitimate
web pages crawling on the Internet maybe infected by different kind of viruses
[4]. In the same report it is stated that malicious image files comprised 10% of
all Web malware encountered in 2009.

In this paper, we focus on iPhone device security. We create a smart mal-
ware namely iISAM to expose possible vulnerabilities of modern mobile devices
and OS, and demonstrate that is relative easy to bypass any security control.
Towards achieving its goals, iISAM employs a variety of programming techniques
(pubic and private frameworks, override OS functions), backgrounding methods
(daemons, dynamic libraries), as well as open source iPhone malware resources
(e.g. Star exploit, iKee scanner logic). The aim of iSAM is to stealthily execute,
six malware mechanisms, self-propagate wirelessly to other iPhone targets and
finally connect back to the iSAM bot master server to update its programming
logic or to obey commands and unleash a synchronized attack. Although specif-
ically designed for iPhone 2G and iPhone 3G with the 3.1 and 4.0.1 iOS version
respectively, iSAM can be easily adapted to attack other Apple iOS devices
(iPhone 3GS/4 and all generations of iPod Touch). To the best of our knowl-
edge this is the first rootkit-similar, airborne and stealth multifarious malware
that is capable of infecting iPhone devices.

The rest of the paper is structured as follows. The next section presents
previous work on the topic. Section 3 provides basic mobile malware design re-
quirements and attributes. Section 4 describes the iISAM overall architecture and
presents an analysis of the six proof-of-concept malicious iISAM’s subroutines.
The last session concludes the paper and gives pointers to future work.

2 Preliminaries and Related Work

Soon after the first iPhone was released, hardware and software modules were
developed to bypass root privileges and overcome any restrictions. That is, only
software signed by Apple’s Certificate Authority is allowed to run on iPhone.
This process is generally referred to as “Jailbreak”. Upon jailbreaking, the en-
tire iPhone file system becomes open for use. Jailbreaking allows to create and
execute third-party software without an official SDK from Apple. The first aim
after jailbreaking was to bypass SIM-Lock. Specifically, every iPhone is locked
to a particular network provider. Unlocking allows the user to place calls with
any GSM/3G carrier by inserting a different SIM into the device.

The installer created by the development team RipDev, and Cydia created by
J. Freeman were the first two package managers that allowed a user to browse and
download third-party applications for jailbroken iPhones. The open-source Cydia
became very popular after iPhone firmware version 2.0. Since then, every time
a hacking team discovers a new iPhone exploit, they publish the corresponding
software that jailbreaks the device. Also, the same software installs a version of
Cydia, a SSH server, and enables the default root login password “alpine”.

D. Damopoulos et al. iSAM: An iPhone Stealth Airborne Malware 3

In July 2007, T. Ormandy discovered “libtiff”, a buffer overflow method that
has already been used to attack Sony’s PSP device. Hackers inspected Apple’s
Mobile Safari web browser in order to test and take advantage of the same vul-
nerability that lay in the Tag Image File Format (TIFF) library, which is used
for viewing TIFFs. Finally, they managed to successfully attack iPhone. Capital-
izing on this vulnerability they created the web site jailbreakme.com. There, by
selecting the “Slide-to-Unlock” button, a malicious TIFF file was simply opened
from Mobile Safari leading to injection and execution of an arbitrary code and
a straightforward Jailbreak. Once the iPhone has been jailbroken, the exploit
patched the libtiff vulnerability in order to avoid future attacks. Apple patched
this vulnerability with i0S 1.1.2 firmware. Vaibhav in his Project Report [6],
discuses and analyzes the libtiff security breach in detail. Moreover, Chavez in
[7] discusses how an intruder can successfully attack a network using a jailbro-
ken iPhone. To perform the attack, she installs and uses a collection of powerful
tools (e.g. Metasploit, Nmap, Whois, tcpdump, a terminal, WifiStumbler).

A year later, Apple introduce the new iPhone 3G that incorporates firmware
version 2.0. Also, it offered a powerful Software Development Kit (SDK) that
gave the opportunity to developers to create and deploy software under cer-
tain public frameworks so as to create the AppStore. In the end of July 2008,
one of the iPhone third-party games namely Aurora Feint was removed from
AppStore due to privacy concerns. Actually, the game was uploading to the de-
velopers server all contacts stored in the host iPhone. In 2009, serious privacy
concerns appeared within the AppStore applications. MogoRoad and Storm8 are
only two of the AppStore applications that have been removed after users’ com-
plaints about privacy concerns. In July 2009, users have raised serious concerns
about their privacy in regard of the behavior of four tracking providers namely
Pinch Media, Flurry, Medialets and Mobclix. J. Freeman tried to protect iPhone
users by creating PrivaCy, an application for jailbroken iPhones, which blocks
AppStore applications from tracking usage information.

The authors in [8] presented a vulnerability in SMS messages, which enables
an attacker to inject fuzzed SMS messages into iPhones, Android and Windows
Mobile devices. This vulnerability leads to a Denial-of-Service (DoS) attack re-
maining at the same time invisible to the service provider. This weakness was
patched with the new 3.0.1 iOS firmware.

In 2009, researchers were trying to gain access to private information (i.e. con-
tacts, photos, mails, SMS messages, passwords) stored in iPhone devices using
various forensics methodologies. J. Zdziarski was the first one who using proper
tools was able to retrieve unencrypted the full iPhone disk image. The same
year he published a white paper with forensics techniques and tools that could
be used to retrieve information from an iPhone device. During the same period,
the first iPhone worm namely Ikee was released and a wave of worm attacks
started. Tkee was simply changing the iPhone’s wallpaper. Note that, Tkee was a
self-propagating worm attacking only jailbroken iphones using the installed SSH
server and the default root password. The same vulnerability was also used by
Dutch 5€ ransom, a worm that locked the iPhone screen asking 5€ on a PayPal

4 D. Damopoulos et al. iISAM: An iPhone Stealth Airborne Malware

account in order to remove the worm. Privacy.A, was another worm running in
stealth mode and be able to steal personal data from the iPhone. In November
2009, a new highly disastrous version of Tkee, namely iKee. B appeared in several
Europe countries. SRI International analysed iKee.B in [9] and provided techni-
cal details about the logic and the internal mechanics of the first iPhone Botnet.
Although iKee.B acts similar to Tkee, it includes a Command & Control (C&C)
logic to control all infected iPhones via a Lithuanian botnet server. Moreover,
it is able to periodically update its malware behaviour. Finally, iKee.B, changes
the default SSH password into “ohshit”, and collects and sends all SMS messages
stored in the device to the bot server. The iKee.B source code is published in
[10].

Recently in [11] Seriot, presented some interesting attack scenarios on how a
malicious application can use official and public frameworks, provided by Apple,
to collect users private information (e.g., phone number, email account setting,
keyboard cache entries, Mobile Safari searches and the most recent GPS location)
programmatically. This happens without the user’s knowledge and without being
rejected by the AppStore review.

On July 2010, the United States government and the new Digital Mille-
nium Copyright Act (DMCA) legislation announced that modifications of smart-
phones, like jailbreak or Unlock are legal as long as they obey the copyright law
[12]. Based on the new law, in August 2010, Comex, an iPhone exploit devel-
oper, with the help of several other hackers introduced the exploit namely Star
or JailbreakMe 2.0. This new exploit can jailbreak all Apple’s products which
incorporate i0S firmware versions from 3.1.2 to the current 4.0.1. Until then,
all previous i0S firmwares have been jailbroken using offline exploits. Star, like
JailbreakMe, is a remote browser-based jailbreak that uses two security flaws
[13]. The first one, uses a corrupted font embedded in PDF files that crash the
Compact Font Format (CFF) to allow arbitrary code execution, while the second
one uses a vulnerability in kernel to escalate the code execution to unsandboxed
root privileges. Any iOS mobile device that opens a jailbroken PDF file from a
website, email, SMS, or Apple’s iBook can be automatically jailbroken. A few
days after Star was released, Comex published the source code [14].

3 Designing principles and requirements for iPhone

The primary aims of a smart malware is to infect the target, self-propagate to
other targets and finally connect back to a bot master server. The latter action
is highly desirable to update the malwares programming logic by improving
already existed features and adding new ones, or to obey commands and unleash
a synchronized attack. To achieve the affomentioned goals, the malware needs to
fulfill some basic design requirements. First off, it needs to infect the device and
gain root permissions. Also, it needs to run continuously in the background of
the OS and has smart malware behaviour remaining stealthy to the legitimate
user.

D. Damopoulos et al. iSAM: An iPhone Stealth Airborne Malware 5

The only way to infect an iPhone and gain root permissions is by exploiting
a vulnerability on an iOS jailbroken device. In case the target iPhone is already
jailbroken, the malware may attempt to use the SSH vulnerability! to wirelessly
connect and infect the device. According to Cydia developer, J. Freeman, over
10% of the 50 million iPhones worldwide are jailbroken [15]. Although these
devices constitute a large proportion for possible targets, it is necessary to find
new ways to infect non-jailbroken iPhones.

To do so, we propose to create a malicious version of Star exploit [14] that
is able to work wirelessly. As already mentioned, Star exploit consists of a PDF,
which uses two security flaws allowing arbitrary code execution and gaining
root privileges, and of a website “JailbreakMe” which stores the PDFs caring
the exploits (one PDF for each iPhone version and one for each iOS version)
[13]. Once the PDF is opened, a dynamic library (dylib) named “installui.dylib”
provides graphic interface and downloads from the corresponding website a file
named “wad.bin”. After that it proceeds to jailbreak the iOS and install Cydia
using a second dylib named “install.dylib”. The file “wad.bin” is a binary file
that contains any type of data; in this case it contains the “install.dylib” and
the Cydia package. According to F-secure, any iOS mobile device that opens an
exploited PDF file from a website, an email, an Apple’s iBook application or
accesses a website directly from an SMS message, can be jailbroken [16]. Note
that iOS is capable of recognizing automatically hyperlinks sent via SMS.

Once a malicious Star PDF file is opened by an iPhone using our malicious
Star version, it is being automatically jailbroaken and installed stealthily mali-
cious software. Also, once an iPhone visits our website or opens the malicious
PDF, the exploit procedure begins, stealthily, without providing any graphical
interface or any information popups. Furthermore, we inject our malware into
the “wad.bin”. This means that once the jailbreaking procedure ends, Cydia and
our malware will be both installed in the iPhone.

In order to create our malicious version of Star, it was necessary to modify
the open source version of Star exploit [14]. Firstly, we decided to pack our
malware as a Debian package. Once Cydia is installed in the iPhone, any file with
the “.deb” extension stored in the folder “/var/root/Media/Cydia/Autolnstall”,
will be also automatically installed in the device. To inject our malicious package
in the “wad.bin” file, it was necessary to modify the Star source class, named
“install” and the python script “wad.py”. Also, it was necessary to modify the
source file “installui.m” which is used to build the dylib named “installui.dylib”.
In the source file “installui.m” we deactivated all displayed graphics interfaces
making the exploit behave stealthily. Moreover, we edited the domain name from
where our malicious “wad.bin” can be downloaded and we recalculated the size
of our malicious “wad.bin” file editing the source where it was necessary. Last,
after the installation of Cydia we shift our malware package into Cydia’s auto-
install directory. It is stressed that all these operations are possible because the
Safari browsing process has acquired root access using the kernel bug.

! The SSH vulnerability, allows intruders to remotely access a jailbroken device’s file
system using the SSH server and the default password “alpine”.

6 D. Damopoulos et al. iISAM: An iPhone Stealth Airborne Malware

The second requirement when designing our malware was the ability to run
continuously in the background of the underlying OS. Until iOS version 4, mul-
titasking was not officially supported. Unofficially, jailbroken iOS could support
applications that run in the background as deamons or use Objective-C dylib.
iOS being a Unix-based OS, can provide multitasking using launchd, a launch
system that supports daemons and per-user agents as background-services. Once
an i0OS has been jailbroken, any installed application or shell script is able
to behave as daemon by creating a launch plist and placing it into the /Li-
brary/LaunchDaemons” iOS directory. Another way to support multitasking is
with dylib. When an application is launched, the iOS kernel loads the applica-
tion’s code and data into the address space of a new process. At the same time,
the kernel loads the dynamic loader i.e., “/System/MobileSubstrate
/DynamicLibraries” into the process and passes control to it. In addition, it is
possible to load a dylib at any time through Objective-C functions. Finally, from
iOS version 4 and later, Apple provided seven APIs that allow applications to
run in the background. Although these APIs are the native way for providing
multitasking, it is not the best way to create and launch a malware. A program
that uses the native way for backgrounding can be easily spoted by the user
from the corresponding menu.

The last requirement is to design a smart malware that will remain stealthy
and invisible to the user at all time. These smart malwares need to achieve their
purpose stealthily by modifying OS code, functions and/or data. Officially, Apple
does not provide any frameworks that override iOS functions. To fill the gap, J.
Freeman has created and incorporated into Cydia MobileSubstrate extension, a
framework that allows developers to deliver run-time patches to system functions
using Objective-C dynamic libraries [17]. By creating a dylib, developers are able
to build applications that run in the background and be able to replace internal
system functions at the same time.

4 The iSAM malware

Given the aforementioned requirements and possible solutions, we created iSAM.
The iISAM malware has been implemented, using Objective-C source code com-
piled for iPhone ARM CPU. Also, iSAM was build using the unofficial ways
(see Section 3) for backgrounding (daemons and dylibs), the public and private?
frameworks and the MobileSubstrate framework with the “substrate.h” header
that overrides iOS functions. This means that certain modules of iSAM can be
classified as rookit.

iSAM consists of a main daemon written in Objective-C and combined with
a proper launch plist (activated at device boot time) and six subroutines written
as Objective-C functions, dylibs or shell scripts. The iSAM main daemon is re-
sponsible to manage all subroutines which are in charge of the propagation logic
(iISAMScanner), the botnet control logic (ISAMUpdate) and the smart malware

2 Unsupported frameworks, which were retrieved directly from a jailbroken iPhone
and have been dumped to get the headers.

D. Damopoulos et al. iSAM: An iPhone Stealth Airborne Malware 7

behaviour (iCollector, iISMSBomber, iDoSApp, iDosNet). iSAMScanner is acti-
vated during the device boot time and runs as a deamon in the background.
iSAMUpdate is activated once per day and only if an Internet connection is
available, while the rest four subroutines are activated once per week but at
random times. Figure 1 depicts the overall iSAM architecture. Important pseu-
docode segments of all the iISAM subroutines discussed in this section can be
found in [22].

Propagation logic Botnet control logic
pag og iSAM g

Collect stealthily confidential information

- Com) ()

Sends stealthily a large number of
malicious SMS messages

Denial of Application Services

Denial of Network Services

Fig. 1. iSAM architecture

In addition to iISAM, we setup a bot master server namely iISAM Server
(iISAMS) having multiple functionality. iISAMS incorporates two basic modules:
(a) a repository server where the newer or special customized version of iISAM
is stored, and (b) a multithread socket server used to communicate with the
infected devices to update iISAM program logic, to collect sensitive information
and to control and execute commands directly on the iPhones. Also, iISAMS
stores our malicious version of Star exploit namely mStar.

4.1 iSAM Infection Methods

As already mentioned iSAM uses two different methods to wirelessly attack
and infect iPhone devices. The first method is by using iISAMScanner (see next
section) which tries to detect jailbroken iPhones having the SSH vulnerability
and infects them directly. Alternatively, we employ mStar, a modified version of
the exploit Star, which is able to jailbreak the device and simultaneously infect
it with iSAM. A recent report by F-Secure showed that nearly 79.8% of mobile
phones infections were as a result of content downloaded from malicious websites
or delivered by Bluetooth and SMS messages [18]. Capitalising on these results

8 D. Damopoulos et al. iISAM: An iPhone Stealth Airborne Malware

we use iISMSBomber (see section 4.5) as part of the second infection method to
contaminate iPhone devices. iISMSBomber is able to read any telephone numbers
stored in the device and send to them stealthly a SMS message with the domain
of iISAMS. This is to trick the user into visiting iSAMS. In addition, mStar
can be delivered to an iPhone when visiting our iSAMS via a web link, email
attachment or a legal popular AppStore application that uses a website link
to redirect to iISAMS. Once 195.251.166.50 (iSAM.samos.icsd.gr) hyperlink is
opened via a SMS message, mStar PDF' is downloaded from iSAMS and loaded
via Mobile Safari. After that, installui.dylib downloads wad.bin and install.dylib
jailbreaks the iPhone and installs iSAM.

4.2 iSAMScanner: Scan, Connect, Infect

iSAMScanner is responsible for the propagation logic of iISAM. iSAMScanner
driven by iSAM daemon, is activated at iPhone boot time. The iISAMScanner
subroutine has three methods: iScan, iConnect and Infector. iScan is conduct-
ing three independent network scans just like iKee.B. Firstly, it scans iPhone’s
local WiFi network address space, then scans in a random way computer sub-
networks on the Internet and finally scans a list of IP address range that belongs
to a set of mobile phone companies in Greece (e.g. 195.167.65.0-195.167.65.255,
GR, Cosmote) or in other European countries (e.g. 139.7.0.0-139.7.255.255, DE,
Vodafone). When a vulnerable iPhone is detected, iConnect connects directly
to the SSH Server using the default root password and by using Infector down-
loads the iISAM.deb package to the directory “/private/var/root/” of the target-
device. Finally, Infector installs the package using the command dpkg -i —refuse-
downgrade —skip-same-version iISAM.deb. From this step forward, the victim’s
device is under the control of iISAM.

4.3 iSAMUpdate: Update, Command, Control

iISAMUpdate, is responsible for the botnet control logic of iISAM. It is also used
for connecting iISAM back to iISAMS to check whether a newer iSAM version
is available. This allows iSAM to be updated e.g., with a new programming
logic or follow commands directly from the server in order to unleash an at-
tack. iISAMUpdate is connected back to iISAMS once every day as soon as an
Internet connection is detected. Every time iISAMUpdate is activated, it re-
trieves some useful information from the device and sends them as a textmes-
sage to iISAMS to be stored in the local database. The message is consisted
of the iISAM version, the Unique Device Identifier (UDID), which is a unique
serial number for each iPhone, the IP address from the e0 interface (WiFi
connection on the iPhone) and the GPS coordinates, as long as a GPS is en-
abled. The following quintuplet gives an example of such a message {version016
[|3bdf7jc607h1j7te441sc02f5h5j6229db66hh63||62.217.70.167||26.700039)|

37.794186}. In case a newer iSAM version is detected, the server answers back
with the name of this version, else it sends back a null message. It is not necessary

D. Damopoulos et al. iSAM: An iPhone Stealth Airborne Malware 9

for the server to respond with the latest version; instead it can answer with a cus-
tomized response based on the UDID or the georgraphical coordinates if it wants
to manipulate the phone in a special way or to attack devices selectively (e.g.
attack all devices that roam to a certain area). Once the iISAM client receives
the name of the version, it executes a Unix shell script named “iUpdate.sh”
which is called with the name of the version as a parameter. The shell script
executes two script commands: the “curl -O iSam.samos.icsd.gr/debs/$1.deb”,
which downloads the newer iSam version directly from iISAMS and the “dpkg —i
~refuse ~downgrade —skip —same —version $1.deb”, that uses the Debian package
manager to install the new version. We should note that the name of the iISAM
version, which the server has sent, is stored in the variable $1. It is also stressed
that once the server has the client’s IP address, is able to connect directly to the
client’s SSH service using the default root password.

An infected iPhone with iSAM is able to search for jailbroken iPhones into
three different subnetworks (local subnet, random Internet subnet, mobile
provider IP subnet) in order to infected them as well. Moreover, an infected
iPhone can be updated or controlled by iSAMS. Lastly, if a non-jaibroken iPhone
opens iISAM.samos.icsd.gr hyperlink through a SMS message, will get infected
by mStar PDF.

4.4 iCollector: Gathers private information from the device

The purpose of this attack module is to collect stealthily confidential information
directly from the device. iPhone stores all user’s data in SQLite databases and
plist files without providing any encryption mechanism to secure their contents.
Once an iPhone has been jailbroken, the iOS sandbox collapses and all databases
and plists stored in the path “/var/mobile/Library/” are exposed to the attacker.

iCollector is an iISAM subroutine that collects stealthily sensitive information
from iPhone’s databases (call, sms, calendar, note) and from Safari’s plist files
(bookmarks and Web browsing history), storing them into a new database named
iCollection.db. After the data collection takes place (see line #1-3 in [22]) and
when an Internet connection is detected (line #3-6), iCollector is connected back
to the iISAMS using the Client/Server model and TCP sockets in order to send
the collected information (line #7-8). iCollector is a dylib written in Objective-C
and uses an SQLite library to read, create and write to databases.

4.5 iSMSBomber: Sends malicious SMS messages in stealth mode

Like all GSM mobile devices, iPhone uses a set of commands, called AT (atten-
tion), to dial a number or exchange SMS messages. In addition to AT commands,
iPhone employs a high level private framework, named “CoreTelephone” (incor-
porated to i0S), in order to communicate with the Baseband using Objective-C
functions. However, this framework is neither available by the iOS SDK nor doc-
umented. The only way to overcome this issue is to retrieve the CoreTelephone
framework directly from the files of a jailbroken iPhone and then use class-dump
utility. Class-dump examines Objective-C runtime information stored in Mach-O

10 D. Damopoulos et al. iISAM: An iPhone Stealth Airborne Malware

files in order to generate the header files [19]. This procedure is necessary to exe-
cute every time a private framework is used. Once the CoreTelephone framework
and the header files are available, a direct communication with the Baseband
can be placed.

To take advantage of such a powerful framework, we create iISMSBomber.
This is an iSAM dylib subroutine that sends silently say 1000 malicious SMS
messages using the private CoreTelephone framework and more specifically the
CTMessageCenter header (line #1-3). Firstly, iSMSBomber makes an SQL query
to the iPhone’s address book database to retrieve telephone numbers from user
contacts (line #4-5). In case no contact exists or the contacts are less than 1000,
then random numbers are created to reach 1000. Every random number begins
with the standard “003069” digit sequence, which represent a mobile phone
number in Greece. Then iSMSBomber creates the following message: “Hello,
how are you? I have found an interesting website: 195.251.166.50 - Please send
it to all’!’ and by using the sharedMessageCenter function, it sends the message
to all the existing (plus random numbers if any) (line #6). Once an iPhone
user receives this message and visits the website link, Mobile Safari web browser
opens automatically and accesses the site. Recall that this domain is redirected
to iISAMS that stores the mSTAR exploit, which in turn contains iSAM. Also
note that this message is malicious only for iPhones iOS. Normally, once a SMS
message is sent or received, automatically it is stored to the SMS database and
a tone rings. iISMSBomber sends stealthily all the 1000 messages without storing
them in the SMS database and without playing any tone. The only way to
expose its presence is by the end of the month, when the mobile user receives
his telephone bill assuming that the user does not usually send a high amount
of messages.

4.6 iDoSApp: Denial of Application Services

Modern mobile devices are designed to increase the efficiency and the produc-
tivity of mobile users on the go. Therefore, by default, all mobile devices come
bundled with some basic pre-installed applications or utilities. iPhone is offered
with seventeen pre-installed applications. Additionally, AppStore contains more
than 3 * 10° iOS applications [20] offering the user the necessary on the go pro-
ductivity. One of the main iOS applications is SpringBoard that manages the
iOS home screen by displaying all icons of the available applications, starts the
WindowServer and launches and bootstraps other applications [21]. For exam-
ple, once a user touches the icon of an application, SpringBoard launches it.
The goal of iDoSApp subroutine is to cause DoS in application launching by
overriding some system functions required by SpringBoard.

In this context, iDoSApp is a dylib, which is activated at random time frames,
is short-term (say 1-minute) and causes real DoS by non-loading an application.
To achieve this, it is necessary to replace SpringBoard system functions, by
class-dump SpringBoard in order to get the private headers and create a dylib.
The headers used by iDoSApp are the substrate.h (used for overriding systems
functions using the MobileSubstrate framework), the SpringBoard.h and the

D. Damopoulos et al. iSAM: An iPhone Stealth Airborne Malware 11

SBApplicationIcon.h headers (derived from the class-dump of SpringBoard (line
#1-3)). SBApplicationlcon is a system function responsible for the behavior of
all icons displayed by the SpringBoard. iDoSApp hooks, modifies and replaces
SBApplicationlcon only when the selector is a launch message. A selector in
Objective-C language is a message that can be sent to an object or class (4).
Normally, every time the user touches on an application icon, a launch message is
sent to SBApplicationlcon to load the application. In our case, once the iDoSApp
is activated, it blocks all launch messages that are sent to SBApplicationIcon
causing DoS (line #5-7). iDoSApp will not compromise iISAM existence, as some
applications can automatically close when an application is written for older or
newer i0S versions or when they fail to manage the memory correctly.

4.7 iDoSNet: Denial of Network Services

The aim of iDoSNet subroutine is to cause DoS by deactivating for - say 30
seconds - all communication services (line #3-6). iISAM will activate iDoSNet
at random times during a random day of the week. iDoSNet is using a private
framework, namely Preferences.framework which can enable/disable the Air-
plane mode that controls 3G/GSM functions. Furthermore, iDoSNet uses the
Apple80211.framework, a private framework that configures all 802.11 network
interfaces, to cause DoS (line #1-2). We make the hypothesis that the dura-
tion of 30 seconds will not expose the existence of iISAM and the vast majority
of users will suppose that it happend due to a temporary interruption to the
wireless signal.

5 Conclusion

The evolution of malwares is a continuous race between intruders and defend-
ers. Both use the same programming methods, tools and resources either to
create a smart malware or to develop an intelligent malware detection mech-
anism. Overall, with the increasing risk of mobile malware, designing a highly
secure mobile device is still a very challenging task. This paper concentrates on
the very popular iPhone device. We design and implement iISAM a new multi-
functional malware that is able to wirelessly infect and self-propagate to iPhone
devices. iISAM is able to override OS functions and uses a variety of advanced
programming methods (public and private frameworks), backgrounding methods
(daemons, dynamic libraries), and open source iPhone malware resources (e.g.
Star exploit, iKee scanner logic) towards achieving its goals. It is also able to
hide its presence, and update its logic via the iSAM bot master server. iSAM in-
corporates six different malware mechanisms and utilises two different methods
to wirelessly infect other devices. The purpose of our study is to highlight iOS
weaknesses and offer in-depth information towards combating such threats.

Our future work will concentrate on obtaining detailed experimental results
e.g. infection and untraceability rates, collector effectiveness etc as well as into
modifying iSAM core so as to be able to automatically infect any iOS-based
device.

12 D. Damopoulos et al. iISAM: An iPhone Stealth Airborne Malware

References

1. Liu, L., Yan, G., Zhang, X., Chen, S.: VirusMeter: preventing your cellphone from
spies: Proceedings of the 12th International Symposium on Recent Advances in In-
trusion Detection, Lecture Notes In Computer Science, Springer-Verlag (2009)

2. Chow, G.W., Jones, A.: A framework for anomaly detection in OKL4-Linux based
smartphones: Proceedings of the 6th Australian Information Security Management
Conference (2008)

3. Kaspersky lab at mobile world congress 2009 in Barcelona, http://www.
securelist.com/en/analysis/204792100/Kaspersky_Security_Bulletin_2009_
Malware_Evolution_2009

4. Landesman, M.: The world’s largest security analysis of real-world web traffic: an-
nual global threat report, ScanSafe STAT, http://www.scansafe.com/downloads/
gtr/2009_AGTR.pdf

5. Apple introduction to security overview, http://developer.apple.com/library/
ios/#documentation/Security/Conceptual/Security_Overview/Introduction/
Introduction.html

6. Pandya, V.R.: iPhone security analysis. Project Report, Department of Computer
Science, San Jose State University (2008)

7. Chavez, A.: A jailbroken iPhone can be a very powerfull weapon in the hands of an
attacker. Project Report, Purdue University, Calumet’s CIT Department (2008)

8. Miller, C., Mulliner, C.: Fuzzing the Phone in your Phone. In: BlackHat, USA (2009)

9. An analysis of the Ikee.B (Duh) iPhone botnet, http://mtc.sri.com/iPhone

10. iKee, http://vx.netlux.org/src_view.php?file=ikee.zip

11. Seriot, N.: iPhone Privacy. In: Black Hat, USA (2010)

12. Copyright, http://wuw.copyright.gov/1201

13. Technical analysis on iPhone jailbreaking, http://community.
websense.com/blogs/securitylabs/archive/2010/08/06/
technical-analysis-on-iphone-jailbreaking.aspx

14. Comex/Star, https://github.com/comex/star

15. The point of jailbreaking, http://www.saurik.com/id/12

16. How many ways can you remotely exploit an iPhone?,
http://www.f-secure.com/weblog/archives/00002003.html

17. Mobilesubstrate, http://cydia.saurik.com/package/mobilesubstrate

18. The state of cell phone malware, http://www.usenix.org/events/sec07/tech/
hypponen.pdf

19. Code the Code, http://www.codethecode.com/projects/class—dump

20. iTunes U downloads top 300 million, http://www.apple.com/pr/library/2010/
08/24itunes.html

21. SpringBoard, http://www.iphonedevwiki.net/index.php/SpringBoard

22. iSAM: An iPhone Stealth Airborne Malware, Online Material,
http://www.icsd.aegean.gr/postgraduates/ddamop/iSAM/iSAM. pdf

