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Abstract

This work investigates the effects of the inputs parameters uncertainties (organs conductivities, boundary
data) on the problem of electrocardiography (ECG).These inputs are very important for the construction
of the torso potential for the forward problem and to reconstruct the missing electric epicardial in the case
of the inverse problem. We propose a new stochastic formulation allowing to combine both sources of
errors. we formulate the forward and the inverse problem to a stochastic one by considering the inputs
parameters as random �elds and a stochastic optimal control formulation. In order to quantify multiple
independent sources of uncertainties on the forward and inverse solutions, we attribute suitable probability
density functions for each randomness source, and apply stochastic �nite elements based on generalized
polynomial chaos method. The ef�ciency of this approach to solve the forward and inverse ECG problem
and the usability to quantify the effect of organs conductivity and epicardial boundary data uncertainties in
the torso are demonstrated through a number of numerical simulations on a 2D computational mesh of a
realistic torso geometry.

Keywords: electrocardiographic forward problem, stochastic finite
elements, polynomial chaos, uncertainty quantification, stochastic
processes, stochastic Galerkin

1. Introduction

The electrocardiography imaging (ECGI) is an imaging modality for the diagnosis of cardiac arrhythmia.
It allows to recover the distribution of the electrical potential on the heart surface from electrical measure-
ments on the body surface and information about the torso geometry of the patient. The forward problem in
electrocardiography allows to construct an electrical potential on the body of a patient given the values of the
electrical sources on the heart domain [1]. This problem is mathematically well posed as it solves a Laplace
equation with a Dirichlet boundary condition on the heart and a zero Neumann boundary condition on the
body surface. While the inverse problem aims to construct the heart electrical potential given two boundary
conditions on the body surface. The �rst condition is the non-�ux boundary condition and the second one
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1 INTRODUCTION

is a Dirichlet boundary condition taking into acount the electrical measurement on the body surface. This
Cauchy problem is known to be ill-posed since of Hadamard [2]. Therefor a naive attempts to reconstruct the
unknown heart potential lead to a wrong results or large deviations from the real solution. Besides, the ill-
posedness nature of this inverse problem, other sources of errors are generally omitted. First, conductivities
of different organs in the torso cage are simpli�ed using a homogeneous torso which produces an inaccurate
description of the inhomogeneous torso volume conductor[3]. This allows to use meshless methods like the
method of fundamental solutions but it reduces the complexity of the model and could have an effect on the
�nal result as shown in [4, 5, 6]. Although one could �nd in the literature values of the organs conductivities,
those could vary from a reference to another [7, 8, 9]. Thus considering this variability means to consider an
uncertainties on their values in the model. Second, a very considerable progress has been achieved in devel-
oping the accuracy of medical devices and measurement system in the two last decade. But when recording
the electrical potential on the body surface, measurement devices could generate errors, due to misplace-
ment of electrodes or the precision of the device itself. In order to take into account these uncertainties and
estimate their effects on the model solution, one could reformulate the deterministic model into a stochastic
problem where constant parameters become random �elds. Various sensitivity analysis methods have been
developed to solve the stochastic problem, such as Monte Carlo (MC) [10, 11], which has been intensively
used for different applications. Although, MC approach is not ef�cient to be applied on complex systems
for which the computational time for an accurate solving of the deterministic model is long. Another type
of technique relies on differential analysis methods like the Neumann and Taylor series [12, 13], those one
are highly quali�ed to directly calculate sensitivity coef�cient. But, they are mathematically impractical
for non linear systems. To overcome those limitations, we need to deal with the input data as a stochastic
process and solving the resulting stochastic computational system of equations. One of the most appropriate
methods that could be used for solving stochastic complex problems is the stochastic �nite elements method
(SFEM). In order to describe the stochastic distribution of the parameter of interest, this method assumes
particular probability density functions (PDFs) [14, 15, 16].
In this work we propose a new stochastic formulation allowing to combine two sources of uncertainty, as-
suming that they have different kind of variability, and acting independently from one to another. Each one
will be described by random �elds, with known prior statistics. The goal in this framework is expressing
uncertainty through probabilistic model in order to quantify a statistical index of the system response, like
mean or variance. At �rst we consider the case of the forward ECG problem solved via SFEM. The problem
is governed by stochastic elliptic equation. The considered sources of uncertainty are the organs conductiv-
ities and the epicardial potential data.
We use a Galerkin stochastic Method [17, 18] allowing to convert the stochastic system to a deterministic
one. Following [19, 20] each source of randomness will be expressed by a �nite number of random variables
that are mutually independent. Using the polynomial chaos (PC) or generalized polynomial chaos (gPC),
allowing to represent the uncertain parameters as well as the response of the system by a set of coef�cients
in a suitable random polynomial basis. Then, an explicit functional relationship between the independent
random variables of each source of uncertainty and the solution is achieved. Then the stochastic governing
equations are transformed to a set of deterministic equations which can be readily discretized via standard
numerical techniques.
In the second part of this work we deal with the stochastic inverse ECG problem with torso boundary data,
conductivity properties are described by random �elds. Indeed deterministic inverse problem of electro-
cardiography can be formulated as optimal control problem constrained by PDEs , i.e. minimization of an
objective functional subject to a set of PDEs as constraints [21]. For the stochastic formulation of a control
optimal problem we can see [22, 23]. Although the theoretical framework and tools for such stochastic
control problems and his approximation are now well-known [24, 25].On other hand several methods for
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carrying out sensitivity analysis exist, but they are not widely applied to complex systems due to their com-
putational cost and dif�culty of implementation. In the work by Caoet.al [26, 27] a stochastic optimization
problem is solved using the Monte-Carlo (MC) approach. It usually takes hundreds, if not thousands, of
samples (solutions of the state equation) to obtain satisfactory approximation of the cost function, which of-
ten makes it prohibitively expensive. The Bayesian inference approach is mostly used for the estimation of
parameters in the presence of noisy measurements, using known information about the parameters to create
a prior distribution [28, 29].
In order to solve the considered stochastic inverse problem, we use the PC as in the �rst part, the derivation
of the optimal system, is analogous to the deterministic case in which one an energy functional has been
used [30, 21]. Control cost functional will be formulated in terms of norms that include both spatial and
stochastic dimensions associated to each random �elds. Moreover for the development of the optimization
algorithm we use an iterative procedure based on the conjugate gradient method like in [21].

2. Function spaces and notation

We give in the following a short overview of the notations, and de�nition of the stochastic Sobolev space
used throughout this paper. LetD be the spatial domain.
 is sample space that belongs to a probability
space(
 ; A; P), A denotes the� -algebra of subsets of
 , and letP be the probability measure. Following
the theory of Wiener [19] , as well as Xiu and Karniadakis [20] , we can represent any general second-order
random processX (! ), ! 2 
 , in terms of a collection of �nite number of random variables. We represent
this random process by a vector� = � (! ) = ( � 1(! ); :::; � N (! )) 2 RN , whereN is the dimension of the
approximated stochastic space. We assume that each random variable is independent, its image space is
given by� i � � i (
 ) � R. Each random variable is characterised by a probability density function (PDF)
� i : � i �! R+ , for i = 1 ; : : : ; N . Then, we de�ne the joint PDF of the random vector�

� (� ) =
Q N

i =1 � i (� i ) 8� 2 � ,

where the support of� is � =
Q N

i = 1 � i . The probability measure on� is � (� )d� . As commented in [20],
this allows us to conduct numerical formulations in the �nite dimensional (N-dimensional) random space� .
In this paper we treat a stochastic problem of electrocardiography, we suppose that the conductivity pa-
rameter and the epicardial boundary data acts like two different and independent sources of uncertain-
ties, which will be represented by two random process. For the conductivity parameter we de�ne the
probability space (respectively the vector of random variables, PDF, the PDF support) with(
 0; A0 ; P0 ),
(respectively� 0 ; � 0; � 0 ) and with(
 1; A1 ; P1 ), (respectively� 1 ; � 1; � 1 ) for the epicardial data.
Let us denote� = � 0 � � 1 andL 2(� ) = L2 (� 0 ) � L2 (� 1 ) the space of random variablesX with �nite
second moments:

E[X 2(� 0 ; � 1 )] =
Z

� 1

� Z

� 0

X 2(� 0 ; � 1 )� (� 0 )d� 0

�
� (� 1 )d� 1 < + 1 ;

whereE[:] denotes the mathematical expectation operator. This space is a Hilbert space with respect to the
inner product:

hX; Y i L 2 ( � ) = E[XY ] =
Z

� 1

� Z

� 0

XY (� 0 ; � 1 )� (� 0 )d� 0

�
� (� 1 )d� 1

Additionally, we consider a spatial domainD and we de�ne the tensor product Hilbert spaceH 1(D )
 L 2(� )
of second-order random �elds as:

L 2(D ) 
 L 2(� ) =
�

u : D 
 � �! R;
Z

� 1

� Z

� 0

Z

D
ju(x; � 0 ; � 1 )j2 dx� (� 0 )d� 0

�
� (� 1 )d� 1

�
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3. Solving stochastic forward problem of electrocardiography

In this section we give a broad outline of the stochastic approach followed to solve the forward problem
with input data uncertainties [31, 21]. For the space domain we segment a 2D slice of an MRI image of a 56
years old man. (see Figure 1). Under our assumption the conductivity uncertainties and epicardial boundary
data uncertainties do not interact, and they are supposed to be independent each other, consequently we
represent the stochastic forward solution of the Laplace equation as random �eld depending to the both
kinds of uncertainties. Since we suppose that the conductivity parameter(� ) depends on the space(x)
and on the stochastic variable(� 0), and the boundary epicardial data(f ) depends on the space(x) and on
a stochastic variable(� 1). Thus, the solution of the Laplace equation will depend on space and the both
stochastic variablesu(x; � 0; � 1). The stochastic forward problem of electrocardiography can be written as
follows

8
<

:

5 :(� (x; � 0) 5 u(x; � 0; � 1)) = 0 in D � 
 ;
u(x; � 0; � 1) = f (x; � 1) on � i � 
 ;
� (x; � 0) @u(x;� 0 ;� 1 )

@n = 0 on � c � 
 ;
(1)

where,� i and� c represent the epicardial and torso boundaries respectively. The weak formulation of SPDEs
is based on an extension of the deterministic theory [14], test function become random �elds and an integra-
tion over stochastic space is done with respect to the corresponding measure. Thus, the weak form involves
expectations of the weak problem formulation in the physical space. Then, denoting byuf the extension of
f to the whole domain, we look for~u 2 H 1

0 (D ) 
 L 2(� ), where~u = u � uf is the weak solution of (1), if
for all v 2 H 1

0 (D ) 
 L 2(� ), we have:

E
� Z

D
� (x; � 1)r ~u(x; � 0; � 1):r v(x; � 0; � 1)dx

�
+ E

� Z

D
� (x; � 1)r uf (x; � 0):r v(x; � 0; � 1)dx

�
= 0 : (2)

Figure 1: MRI 2D slice of the torso (left), 2D computational mesh of the torso geometry showing the different regions of the torso
considered in this study: fat, lungs and torso cavity, (right). The angle� is the second polar coordinate.
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3.1. Descretization of the stochastic forward problem
A stochastic processX (� ) of a parameter or a variableX is represented by weighted sum of orthogonal

polynomialsf 	 i (� )g denoting the generalized chaos polynomial. More details about the different choices
of PDFs could be found in [16].

X (� ) =
P p

i =0 X̂ i 	 i (� ),

whereX̂ i are the projections of the random process on the stochastic basisf 	 i (� )gp
i =1 with respect to the

joint PDF� [31].
The mean value and the standard deviation of X over
 are then computed as follows:

E(X ) =
Z




pX

i =0

X̂ i 	 i (� ) = X̂ 0; stdev[X ] =
� pX

i =1

X̂ 2
i

Z



	 i (� )2� 1

2 :

In order to solve the equation (1) we use the stochastic Galerkin (SG) method to compute the approximate
solutions. To develop this method, we denoteY p

� � L 2(� 0 ) andY p
u f

� L 2(� 1 ) the stochastic approxima-
tion spaces, and we haveY p

� � Y q
u f

� L 2(� ).
In our case we suppose that the conductivity parameter varies uniformly like in [31, 21] and we use the Leg-
endre chaos polynomials which are more suitable for uniform probability density, in other hand we assigned
Gaussian probability density to the epicardial boundary data, the corresponding stochastic orthogonal basis
to Gaussian random �eld is Hermite chaos polynomials [20].

Y P
� = spanf L 0; ::::; L pg Y P

u f
= spanf H0; ::::; Hpg.

In this study we have targeted to evaluate in the same time, two different source of uncertainties on the
electrical potential, then� , uf andu are now expressed in the Galerkin spaceY p

� � Y q
u f

as follows:

� (x; � 0) =
rX

l =1

�̂ l (x)L l (� 0 ): (3)

uf (x; � 1) =
qX

k=1

(~uf )k (x)H k (� 1): (4)

u(x; � 0; � 1) =
pX

i =1

qX

j =1

ûij (x)L i (� 0)H j (� 1) (5)

By substituting (4),(3),(5) into the stochastic diffusion equation (1) and by projecting the result on the poly-
nomial basisf Lm (� 0 )Hn (� 1 )g(p;q)

m ;n = 1 :
Form = 1 ; :::; q etn = 1 ; :::; p,

pX

i =1

qX

j =1

rX

l =1

D jn Ciml r :(�̂ l (x)r )ûij (x)) = 0 in D;

û11(x) = (~uf )1(x) on � i ; 8i = 1 ; :::p;

û12(x) = ( ~uf )2(x) on � i ; 8i; = 1 ; :::p;

ûij (x) = 0 on � i ; 8i; = 2 ; ::p; j = 3 ; ::q;

�̂ l (x)
@̂uij (x)

@n
= 0 on � c; 8i = 1 ; ::p; j = 1 ; ::q;

(6)
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WhereCiml = E[L i (� 0 ); Lm (� 0 ); L l (� 0 )] etD jn = E[H j (� 1); Hn (� 1)].
For the spatial domain, we de�ne a subspaceVh � H 1

0 (D ) of standard Lagrange �nite element functions on
a triangulation of the domainD .

Vh := spanf � 1; � 2; ::::; � N g

Obviously this ordering induces the following block structure of the linear system of equations :

2

6
6
6
6
6
6
6
6
6
6
4

A (1 ;1;1;1) A (1 ;1;1;2) � � � A (1 ;1;1;q) A (1 ;1;2;1) � � � A (1 ;1;p;q)

A (1 ;2;1;1) A (1 ;2;1;2) � � � A (1 ;2;1;q) A (1 ;2;2;1) � � � A (1 ;2;p;q)

...
... � � �

...
... � � �

...
A (1 ;q;1;1) A (1 ;q;1;2) � � � A (1 ;q;1;q) A (1 ;q;2;1) � � � A (1 ;q;p;q)

A (2 ;1;1;1) A (2 ;1;1;2) � � � A (2 ;1;1;q) A (2 ;1;2;1) � � � A (2 ;1;p;q)

...
... � � �

...
... � � �

...
A (p;q;1;1) A (p;q;1;2) � � � A (p;q;1;q) A (p;q;2;1) � � � A (p;q;p;q)

3

7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
4

Û11

Û12
...

Û1q

Û21
...

Ûpq

3

7
7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
6
6
6
4

B 11

B 12

...
B 1q

B 21

...
B pq

3

7
7
7
7
7
7
7
7
7
7
5

where every matrixA ( i;j ;m;n ) 2 RNx � RNx is a linear combination of �nite element stiffness matrices

A ( i;j ;m;n ) = D j;n

rX

l =1

Ciml K l 8i; m = 1 ; :::p; j; n = 1 ; :::q; (7)

K l = [ K l ]h;t = ( � l r � h :r � t ) 8l = 1 ; :::r; (8)

h denotes the degrees of freedom of the nodes of the mesh in which the electrical potential values is unknown.
Similarly, every vectorB ij 2 RNx is a linear combination of �nite element load vectors:

B ij =
qX

n

pX

m

rX

l =1

D j;n Ciml f l 8i = 1 ; :::p; j = 1 ; :::q; (9)

f l =
X

x h 2 � i

ûij (� l r � h :r � t ) 8l = 1 ; :::r; (10)

with h denoting the degrees of freedom of the (known) Dirichlet boundary conditions of the solution.

3.2. Results

In this section we conduct the numerical simulation obtained for the direct problem, which show the
in�uence of the conductivity variabilities and the epicardial potential data uncertainties on the electrical po-
tential in the torso. For instance the electrical potential in the heart boundary denoted by (Uex ), we generate
synthetical data using the bidomain model in the heart domain [32].

Since we assume that the uncertainty of the conductivity value follows a uniform probability density,
as probability density functions� 0we use the Legendre polynomials de�ned on the interval
 = [ � 1; 1].
We also suppose that the true conductivity uncertainty interval is centered by� T , the true conductivity see
Table 1. In other handUex will represent the mean of the Gaussian random �eld representing the epicardial
boundary data uncertainty. We denote its stdev by� with (� = �f ), � represent the level of uncertainty of

6
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the torso data. Under these assumptions, we express the conductivity and the epicardial boundary data as
follows[33, 31]:

� (x; � 0) = �̂ 0(x)L0 (� 0 ) + �̂ 1 (x)L1 (� 0 ): (11)

uf (x; � 1) = ~uf 0 (x)H0(� 1) + ~uf 1 (x)H1(� 1): (12)

where� (x; � 0) is uniformly distributed on the interval[a(x); b(x)] for each pointx 2 D . We have then
�̂ 0(x) = 0 ; 5(a(x) + b(x)) and�̂ 1(x) = 0 ; 5(b(x) � a(x)) . Foruf (x; � 1) which follow a Gaussian distribu-
tion for each pointx 2 � c. Then we have~uf 0 = Uex and~uf 1 = � .
In �gure show The set of results obtained for the relative error between the exact solution and the obtained

organ category conductivity (� T :S/m)
lungs 0.096

torso cavity 0.200
fat 0.045

Table 1: Conductivity values corresponding to the organs that are considered in the model.

solution on� c. In the �rst case we only study the effect of torso boundary data uncertainties where we
gradually increase the stdev� from zero to50%. In the second (respectively, third, fourth) case we add
the effect of fat (respectively, cavity, lung) with� 50% of uncertainties. We �nd that the relative error of
the forward problem solution has been barely affected by the uncertainties of the fat conductivity,On the
contrary the effect of the lung and cavity conductivity uncertainties is high to some level of� � 10� 1, in
which all curves take the same values as the case with only epicardial boundary data uncertainty.

7
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Figure 2: The effects of� 50% uncertainty to each organ conductivity from it's reference conductivity, and different levels of uncer-
tainty on the the epicardial boundary data. X-axis denote the different stdev value (� ) of the Gaussian epicardial data boundary �eld.
Y-axis the mean square of the stdev value ofu(x; � 0 ; � 1 ).

(a) (b) (c)

(d) (e) (f)

Figure 3: Mean value of the SFE panel (a). Standard deviation of the SFE solution for epirdial data uncertainty in the left and in the
right � 50% lung uncertainty and epirdial data uncertainty for� = 0 :01 (respectively from top the bottom� = 0 :1 , � = 0 :3 panel(d)
, � = 0 :5 panel(e)). Panel(f) shows the Standard deviation of the SFE solution with only epirdial data uncertainty for� = 0 :5
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4 STOCHASTIC INVERSE PROBLEM OF ELECTROCARDIOGRAPHY

4. Stochastic inverse problem of electrocardiography

The inverse problem in electrocadiography imaging (ECGI) is a technique that allows to construct the
electrical potential on the heart surface� i from data measured on the body surface� c. This problem is
known to be ill-posed since Hadamard [2], then we propose to build a optimal control problem, we write
a cost function that takes into account the uncertainties in the torso conductivities and the torso boundary
data. We then use an energy cost function as used in [30] constrained by Laplace formulation as presented
in the previous paragraph, with conductivity and torso boundary data as being stochastic processes. We look

for (�; � ) 2
�

L 2(� i) 
 L 2(� )
�

�
�

L2 (� i) 
 L2 (� )
�

minimizing the following cost function with a least
square setting: 8

>>>>>>>>>>><

>>>>>>>>>>>:

J (�; � ) = 1
2 E

� R
� c

�
v(x; � 0; � 1) � f

� 2
d� c

+
R

� i

�
� (x; � 0) @v(x;� 0 ;� 1 )

@n � �
� 2

d� i

�
;

with v(x; � 0; � 1) solution of:

5 :(� (x; � 0) 5 v(x; � 0; � 1)) = 0 ; in D � 
 ;
v(x; � 0; � 1) = �; on � i � 
 ;
� (x; � ) @v(x;� 0 ;� 1 )

@n = 0 ; on � c � 
 :

(13)

We followed the same way presented in our last work [21], to calculate the gradient of the cost functionJ
with respect to� = � 0(x)H0(� 1) + � 1(x)H1(� 1); and� = � 0(x)H0(� 1) + � 1(x)H1(� 1), the obtained result
is given by:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

@J(�;� )
@�0

� 0 = E[
R

� int
(� @v

@n � � )� 0d� int]; 8� 0 2 L 2(� int);

@J(�;� )
@�0

h0 = E[
R

� int
� @�

@nh0d� int]; 8h0 2 L 2(� int);

@J(�;� )
@�1

� 1 = E[
R

� int
(� @v

@n � � )� 1d� int]; 8� 1 2 L 2(� int);

@J(�;� )
@�1

h1 = E[
R

� int
� @�

@nh1d� int]; 8h1 2 L 2(� int);

with � solution of:

r :(� (x; � 0)r � (x; � 0; � 1)) = 0 ; onD � 
 ;
� (x; � 0; � 1) = � (x; � 0) @v(x;� 0 ;� 1 )

@n � �; on � int � 
 ;
� (x; � 0) @�(x;� 0 ;� 1 )

@n = � (v(x; � 0; � 1) � f (x; � 1)) ; on � ext � 
 :

(14)

4.1. The conjugate gradient algorithm.
Let us solve numerically the minimization problem (13). As method we choose the conjugate gradient

optimization procedure, which is one of the most intuitive and simple methods used to solve problems of
optimal control [34, 30]. The different steps of the algorithm are performed as follows:
Step 1.Givenf 2 L 2(� c) 
 L 2(� ) choose an arbitrary initial guess

(' p; tp) 2
�

L 2(� i) 
 L 2(� )
�

�
�

L2 (� i) 
 L2 (� )
�

.

Step 1.1.Solve the well-posed stochastic forward problem:
8
<

:

r :(� (x; � 0)r vp(x; � 0; � 1)) = 0 in D � 
 ;
� (x; � 0) @vp (x;� 0 ;� 1 )

@n = 0 on � c � 
 ;
vp(x; � 0; � 1) = tp on � i � 
 ;

(15)
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4.1 The conjugate gradient algorithm.4 STOCHASTIC INVERSE PROBLEM OF ELECTROCARDIOGRAPHY

in order to obtainvp j � i and� @vp

@n j� i .
Step 1.2.Solve the stochastic adjoint problem:

8
<

:

r :(� (x; � 0)r � p(x; � 0; � 1)) = 0 in D � 
 ;
� p(x; � 0; � 1) = � (x; � 0) @vp (x;� )

@n � ' p on � i � 
 ;
� (x; � 0) @�p (x;� 0 ;� 1 )

@n = � (vp(x; � 0; � 1) � f (x; � 1)) on � c � 
 ;
(16)

in order to obtain� p
=� i

, and� @�p

@n =� i
.

step 1.3.: We evaluate the gradient:

r J (' 0
p; t0

p) =
�

E
h
' 0

p � � (x; � 0)
@vp(x; � 0; � 1)

@n

i
; E

h
� (x; � 0)

@�p00(x; � 0; � 1)
@n

i�
; (17)

r J (' 1
p; t1

p) =
�

E
h
' 1

p � � (x; � 0)
@vp(x; � 0; � 1)

@n

i
; E

h
� (x; � 0)

@�p01(x; � 0; � 1)
@n

i�
: (18)

Step 1.4.Determine the descent directiondp as follows:

8
>>>>><

>>>>>:


 0
p� 1 = kr J ( ' p

0 ;t p
0 )k2

kr J ( ' p � 1
0 ;t p � 1

0 )k2 ;


 1
p� 1 = kr J ( ' p

1 ;t p
1 )k2

kr J ( ' p � 1
1 ;t p � 1

1 )k2 ;

d0
p := ( dp

10; dp
20) = �r J (' p

0; tp
0) + 
 0

p� 1d0
p� 1;

d1
p := ( dp

11; dp
20) = �r J (' p

1; tp
1) + 
 1

p� 1d1
p� 1;

(19)

in order to obtain:
(' 0

p+1 ; t0
p+1 ) = ( ' 0

p; t0
p) + � 0

pdp
0;

(' 1
p+1 ; t1

p+1 ) = ( ' 1
p; t1

p) + � 1
pdp

1;

where the scalar� p is obtained through a linear search by :

� 0
p = �

E [
R

� ext
zp(vp � f )d� ext] + E [

R
� int

(� @zp

@n � dp
10)( � @vp

@n � ' 0
p)d� int]

E [
R

� ext
(zp)2d� ext] + E [

R
� int

(� @zp
@n � dp

10)2d� int]
;

� 1
p = �

E [
R

� ext
zp(vp � f )d� ext] + E [

R
� int

(� @zp

@n � dp
11)( � @vp

@n � ' 1
p)d� int]

E [
R

� ext
(zp)2d� ext] + E [

R
� int

(� @zp
@n � dp

11)2d� int]
:

We note thatzp is the solution of:

8
<

:

r :(� (x; � 0)r zp(x; � 0; � 1)) = 0 in D � 
 ;
� (x; � 0) @zp (x;� 0 ;� 1 )

@n = 0 on � c � 
 ;
zp(x; � 0; � 1) = dp

1 on � i � 
 :
(20)

Step 2.Having obtained(' p; tp) for p � 0, setp = p + 1 and repeat from step 1.1 until the prescribed
stopping criterion is satis�ed. As a stopping criterion, we choose




 E [tp+1 (x; � )] � tp(x; � )






L 2 (� int)
� �: In

practice, we took� = 0 :001.
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5 RESULTS

5. Results

In this paragraph, we show the numerical results of the stochastic inverse problem. Initially, we generate
synthetical data using the bidomain model in the heart domain. Since we suppose that the torso is a passive
conductor, the electrical potential in the torso is governed by the Laplace equation and the conductivity de-
pends on the domain as described. We extract the body surface potential at a given time step, it represents
the mean of the stochastic boundary valueE(f ) on the complete boundary� c. Then, we solve the inverse
problem following the algorithm described in previous paragraph.
In order to display the stochastic behavior of the reconstructed epicardial potential(� ), we run various sim-
ulations for different level of� . Figure 4, provides an overview of the obtained results taking into account
solely the torso data as source of uncertainty. Figure 4(a) gives the obtained result for� = 1% for (3,100,500
and 1000) samples of(� ), in Figure 4(b) (respectively Figure 4(c), Figure 4(d)) we do the same for� = 10%
(respectively,30%, 50%). Analyzing these results, it is observed that reconstructed epicardial potential(� )
at a level of� less than10%still have a homogenous deviation to the exact solution with greater margin of
error compared to the �rst case� = 1% in which the effect appear negligible. Though once� exceeds10%
the effect of the torso uncertainty seems more and more serious, and produces a large and chaotic variability
on � .
Therefore, to bring out the effect of the organs conductivity uncertainties, Figure 5 summarizes the ob-
tained results combining the torso data and the organs conductivity uncertainties. From top to bottom
� = 1%; 10%; 30% and50%, we show the mean value of the SFEM inverse solution� (black line), ex-
act solution (blue dashed line) and the95%con�dence interval (cyan region bounded by red lines). For each
point on the heart boundary the95%con�dence interval is de�ned as[� � 2 stdev; � + 2 stdev]. In this
�gure, there are four columns: In the �rst column we only consider the uncertainty on the measured data
f and in the second (respectively, third, fourth) we consider both uncertainties on the measured dataf and
50%uncertainty on the fat (respectively, cavity, lung) conductivity. First, we remark that increasing the level
of � from 1% to 30%, the epicardial data (� ) is more sensitive to the cavity and lung conductivities than for
fat, as found in the numerical results obtained in [21]. Then we observe that the organs conductivity effects
become slightly important, once the value of� exceeds30%. As shown in the two cases with� = 30%
(third line) and� = 50% (fourth line) the error of the inverse mean value compared to the exact solution is
more-less the same for the four uncertainty case considered here.

11



5 RESULTS

(a) (b)

(c) (d)

Figure 4: Representation of the stochastic behavior of the reconstructed epicardial potential(� ) taking into account the torso data
uncertainty, for different numbers of samples, each panel gather four plots showing the exact epicardial data solution (blue line) and
from left to right top to bottom the simulation of 10, 100, 500, and 1000 samples of(� ) (red line). Panel (a), (respectively panel (b),
panel (c) and panel (d)) shows the obtained results for� = 1% (respectively� = 10% ; 30% and50%)
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5 RESULTS

f uncertainty f & fat uncertainties f & cavity uncertainties f & lung uncertainties

Figure 5: deviation of the reconstructed stochastic �eld(� ) with respect to the case without uncertainties for different level of� = 1%
(respectively from top the bottom� = 1% , � = 10% , � = 30% , � = 50% ), and from the left to right the we depicts the case with
only the torso data uncertainty ( respectively torso data uncertainty with� 50% of fat, cavity and lung uncertainty

Furthermore, Figure,6 illustrates for the same four cases presented in Figure,5 the distribution deviation
of the SFE inverse solution(v(x; � 0; � 1)) , with respect to the case without uncertainties. Similarly, from top
to bottom� = 1%; 10%; 30%, and50%. The obtained results con�rm our outcomes in Figure,5: For low
values of� (� = 1%), the deviation is much more pronounced for the lung conductivities case than it is for
the other organs. We also have the same pattern of the deviation distribution for high values of� (� � 30%).
In addition, the distributions shown in Figure,6 allow us to localize the most sensitive regions to uncertainties
with a global vision of the uncertainty propagation.
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5 RESULTS

f uncertainty f & fat uncertainties f & muscle uncertainties f & lung uncertainties

Figure 6: The �gure presents for different level of� = 1% (respectively from top the bottom� = 1% , � = 5% , � = 10% , � = 30% ,
� = 50% ), the deviation of the SFE inverse solution(v(x; � 0 ; � 1 )) with respect to the case without uncertainties. And from the left to
right the panels depict the case with only the torso data uncertainty ( respectively torso data uncertainty and� 50% of fat, muscle and
lung uncertainty
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6 CONCLUSION

6. Conclusion

This paper presents a novel framework of the stochastic approach, allowing to combine two indepen-
dent sources of uncertainty in the forward and inverse problem of ECG. The method is based on the chaos
polynomial and SFE method. We formulated the inverse problem as an optimal control stochastic inverse
problem in order to be able to propagate the source of uncertainty to the output of the problem (epicardial
potential in this application). We proved the ef�ciency of this tools through various numerical simulations.
Our �nding is that the potential boundary data uncertainty have a strong effect on the forward and inverse
problem solution, compared to the organs conductivity uncertainties. By the same token, our results permit
to classify the in�uence of each input parameter: the lungs and the cavity conductivity uncertainties are in
the same level of sensitivity. However, the uncertainty of the fat conductivity did not affect too much the
inverse solution. Finally the challenge that we propose to address in future works is to analyze the in�uence
of the proximity in various organs to the bounding surfaces on the model accuracy, also the implementation
in 3D of the proposed methodology.
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