C. Corrado, J. Whitaker, H. Chubb, S. William, M. Wright et al., Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms, IEEE Transactions on Biomedical Engineering, vol.64, issue.4, pp.1-1, 2016.
DOI : 10.1109/TBME.2016.2574619

M. Ethier and Y. Bourgault, Semi-Implicit Time-Discretization Schemes for the Bidomain Model, SIAM Journal on Numerical Analysis, vol.46, issue.5, pp.2443-2468, 2008.
DOI : 10.1137/070680503

J. Kim and J. P. Hespanha, Discrete approximations to continuous shortest-path: Application to minimum-risk path planning for groups of uavs, Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, pp.1734-1740, 2003.

C. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circulation Research, vol.68, issue.6, pp.1501-1526, 1991.
DOI : 10.1161/01.RES.68.6.1501

C. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation Research, vol.74, issue.6, pp.1071-1096, 1994.
DOI : 10.1161/01.RES.74.6.1071

C. Mitchell and D. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

P. Pathmanathan, Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers, International Journal for Numerical Methods in Biomedical Engineering, vol.50, issue.12, pp.890-903, 2012.
DOI : 10.1002/cnm.1443

E. Pernod, M. Sermesant, E. Konukoglu, J. Relan, H. Delingette et al., A multi-front eikonal model of cardiac electrophysiology for interactive simulation of radio-frequency ablation, Computers & Graphics, vol.35, issue.2, pp.431-440, 2011.
DOI : 10.1016/j.cag.2011.01.008

URL : https://hal.archives-ouvertes.fr/inria-00616180

M. Sermesant, E. Konukoglu, H. Delingette, Y. Coudière, P. Chinchapatnam et al., An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology, 2007.
DOI : 10.1007/978-3-540-72907-5_17

URL : https://hal.archives-ouvertes.fr/inria-00616051

J. A. Sethian, A fast marching level set method for monotonically advancing fronts., Proceedings of the National Academy of Sciences, pp.1591-1595, 1996.
DOI : 10.1073/pnas.93.4.1591

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39986/pdf

D. Streeter, R. Berne, N. Sperelakis, and S. Geiger, Gross morphology and fiber geometry of the heart. Handbook of Physiology, Section 2: The Cardiovascular System, pp.61-112, 1979.

T. Tusscher, K. Noble, D. Noble, P. Panfilov, and A. , A model for human ventricular tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.4, pp.1573-1589, 2004.
DOI : 10.1152/ajpheart.00794.2003

L. Tung, A bi-domain model for describing ischemic myocardial D?C potentials, 1978.

M. Wallman, A. Bueno-orovio, and B. Rodriguez, Computational probabilistic quantification of pro-arrhythmic risk from scar and left-to-right heterogeneity in the human ventricles, Computing in Cardiology Conference (CinC), pp.2013-711, 2013.

M. Wallman, N. P. Smith, and B. Rodriguez, A Comparative Study of Graph-Based, Eikonal, and Monodomain Simulations for the Estimation of Cardiac Activation Times, IEEE Transactions on Biomedical Engineering, vol.59, issue.6, pp.1739-1748, 2012.
DOI : 10.1109/TBME.2012.2193398