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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

We report on a discrete logarithm computation in Fp5 for a 20-decimal
digit prime, using the number field sieve algorithm (NFS-DL), and a re-
lation collection phase over degree-two polynomials, instead of the more
classical degree-one case.

We select the 20-decimal-digit (dd) prime p = 31415926535897932429 =
b1019πc+ 45, and consider the finite field Fp5 where

p5− 1 = (p− 1) · 11 · 101 · 191 · 7363691 · 33031656232204364259865845615041 · `

where ` = 18872357657025660688767070155926911 is a 35dd prime. Our aim is
to compute discrete logarithms in the prime order subgroup of F∗

p5 of cardinality

`. Since the extension degree is prime, the ExTNFS [4] algorithm is restrained
to its TNFS original form [1], with R a degree-5 number field above Q and
sieving in dimension 10, or to the high degree variant of NFS-DL (NFS-HD),
with R = Q (no tower). We implemented the latter option: NFS-HD. Our
computations were done using Xeon CPU E5520 @ 2.27GHz cores.

1 Polynomial selection

The Joux–Lercier–Smart–Vercauteren–1 (JLSV1) and generalized Joux–Lercier
(GJL) are expected to be the best polynomial selections, according to Figure 1.
We get the best pair of polynomials (f0, f1) using the JLSV1 method (see Sec-
tion B).

To improve the running-time of the sieving, we searched for pairs of poly-
nomials providing good smoothness propoerties. We precomputed many irre-
ducible polynomials f0 of degree 5 in the Brumer family (see Section B.3), with
|a| ≤ 8 and b of 30 to 34 bits. We selected the ones such that |a| ≤ 4 and b
is 33-bit long, and satisfying α(f0) ≤ −4.0 (α is defined in [2]). We obtained
8798 polynomials f0 in 9 core-days on an Xeon E5-2609 @ 2.40GHz. Then we
computed f1 for these good f0. It took again 6 core-days. We get:
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f0 = x5 − 5x4 − 5368736472x3 + 10737472959x2 − 5368736477x− 2,

f1 = 5851642500x5 − 29258212500x4 + 25042672429x3 + 37689292642x2

− 4215540071x− 11703285000.

2 Relation collection

2.1 Three-dimensional relation collection

The relation collection was performed using the special-q sieve [3] and the three-
dimensional sieving algorithms described in [2]. The smoothness bounds are set
to 225, and the cofactorization is performed if on both sides, the remaining norms
are smaller than 280, that is slightly more than three times the size of the large
prime involved in the factorization of the norms. The special-qs are set on side
1 and have norm in ]221, 223.75[: inside a special-q-lattice, we sieve on both sides
the ideals of inertia degree 1 that have a norm bellow 221. There are 156,186 such
ideals on side 0 and 155,192 on side 1. There are fewer ideals of inertia degree
2 of norm below than the smoothness bounds (759 on side 0 and 778 on side 1),
and rare projective ideals (6 on side 1, which is coherent with the factorization
of the leading coefficient of f1, that is 5851642500 = 22 · 34 · 54 · 11 · 37 · 71). The
latter two set of ideals were ignored during the sieving step.

In each special-q-lattice, we consider a sieving region containing 225 elements
c of the lattice, where the coordinates (c[0], c[1], c[2]) are in the sieving region
[−28, 28[×[−28, 28[×[0, 27[. The time per special-q during the computation was
between 15.37 seconds and 93.87 seconds, and the largest number of relations
per special-q is 34. The cost to find the 6,171,924 relations was about 359 CPU
days.

2.2 Two-dimensional relation collection

For comparison purposes, a second relation collection was performed using a
special-q strategy but with a two-dimensional sieving, using the CADO-NFS
implementation. For this computation, we use a polynomial pair coming from
the JLSV0 polynomial selection (see Section B.2).

The special-qs are set on side 0 and have norm in ]224.25, 226[: inside a
special-q-lattice, we sieve on both sides the ideals of inertia degree 1 that have
a norm bellow 224.25. The smoothness bounds are set to 226 on side 0 and 227

on side 1, and the cofactorization is performed if on both sides, the remaining
norms is less than 252 on side 0 and 254 on side 1, that is 2 large primes on both
sides.

In each special-q-lattice, we consider a sieving region that contains 229 ele-
ments c of the lattice, where the coordinates (c[0], c[1]) are in [−214, 214[×[0, 214[.
The time per special-q during the computation was between 0.54 second and
18.14 seconds, and the largest number of relations per special-q is 21. The
cost to find the 10, 458, 616 relations was about 375 CPU days. It is smaller
than the 11, 561, 362 = π(226) + π(227) that are almost needed, where π is the
prime counting function. We also provide in Section C different parameters for
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which we estimate that a complete set of relations would be obtained, using a
two-dimensional relation collection.

The best running time for the relation collection and the smallest matrix are
reached by using the three-dimensional relation collection, as shown in Table 2.

3 Filtering

On the 6,171,924 relations produced with the three-dimensional relation col-
lection, 4,999,773 were unique, and this led to a 1,489,631×1,489,625 matrix
after singleton removal, reduced to a final 490,307×490,301 matrix after more
intensive filtering.

4 Linear algebra

The linear algebra step is performed using the block-Wiedemann algorithm.
The parameters used were m = 12 and n = 6. Then 6 parallel jobs were used,
one for each of the 6 sequences. Each parallel job used a 2 × 2 node topology,
each node having 8 cores.

The time to compute the Krylov subspaces was 237 hours, then 4 hours for
the linear generator and 35 hours to create the solutions from the generator.
3,787,509 logs were reconstructed (out of at most 4,128,343 possible logs).

5 Individual logarithms

To completely validate our work, we report the computation of an individual
logarithm. We first note that h = X + 1 generates the whole multiplicative
group F∗

p5 . We find that h lifts to K0 as z + 1 of norm 22 · 32 · 52 · 23 · 1037437,
corresponding to the factorization in O0

(z + 1) = 〈3, x+ 4〉2〈2, x3 + x2 + x+ 3〉〈5, x+ 6〉2〈23, x+ 1〉〈1037437, x+ 1〉

All logs were known from the first phase (including that of the degree-two ideal
above 2), but that of norm 1037437 that we needed to descend. Finally,

vlog(h) = 6948023766431672832537048942111617 mod `.

Now, consider the target made of the decimals of π

t = 3141592653589793238X4 + 4626433832795028841X3+
9716939937510582097X2 + 4944592307816406286X + 2089986280348253421.

After 20,000 seconds we find that the lift of h9002259 t has a smooth norm and
corresponding ideal factorization

〈2, x3 + 2〉2〈41, x+ 11〉〈43, x+ 21〉〈3471899, x+ 3245828〉
〈37276061, x+ 17122378〉〈3115088134901, x+ 1265257252254〉

〈366996697855783, x+ 268803256185002〉
〈377568478750783, x+ 9644708969240〉
〈4811620104558151, x+ 2380670555180752〉
〈120866356812660071, x+ 98064663938425303〉
〈4133950459282418267, x+ 1195413435698177697〉.
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All ideals of norm > 37276061 had to be re-expressed in terms of prime ideals
of smaller norm. Contrary to the relation collection step, we can re-express the
elements by looking for a relation given by a degree 1 polynomial, and therefore
use the program las_descent of the CADO-NFS package [7], which took 11,958
seconds, finally leading to

vlog(t) = 2842707450406843989059381483536738 mod `.

Note that we could use ideals of inertia degree larger than 1 whose logarithms
would be known from the first step, though they rarely pop up at this stage,
except for the smallest ones. Re-express these ideals will require to find a relation
given by a polynomial of degree at most 2.
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Part Time (CPU days)
Polynomial selection 15
Relation collection 359

Linear algebra 11.5
Individual logarithm 0.37

Total 386

Table 1: Timing for each part of the computation.

B Polynomial selections

In this appendix, the computation of the α values is done using the three-
dimensional version defined in [2].

B.1 Comparison of polynomial selections

We have considered the different polynomial selections:

• Joux–Lercier–Smart–Vercauteren–0 (JLSV0);

• Joux–Lercier–Smart–Vercauteren–1 (JLSV1);

• generalized Joux–Lercier (GJL);

• conjugation (Conj);

• Sarkar–Singh (SarSin).
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Figure 1: Average norm sizes for fixed searching space.
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B.2 JLSV0

The polynomials are chosen to be, using the JLSV0 polynomial selection,

f0 = x5 + 14x4 − 7x3 − 4x2 − 4x+ 15,

f1 = 28f0 + p

= 256x5 + 3584x4 − 1792x3 − 1024x2 − 1024x+ 31415926535897936269.

We get α(f0) = −2.0 and α(f1) = −3.5.

B.3 JLSV1

With the polynomials defined in Section 1, we get α(f0) = −4.0 and α(f1) =
−8.3. To build these polynomials, we have chosen the Brumer degree-5 param-
eterized polynomial family in Qa,b[X]:

Bru(a, b;X) = X5 + (a− 3)X4 − (a− b− 3)X3 + (a2 − a− 2b− 1)X2 + bX + a

whose Galois group is the dihedral group D5 of order 10. We took the linear
parameter b as the JLSV1 parameter, and set a to a small value, in [−4, 4] in
our experiments.

There exists a parameterized cyclic family: Lehmer’s family proposed in [5]

X5 + t2X4 − (2t3 + 6t2 + 10t+ 10)X3 + (t4 + 5t3 + 11t2 + 15t+ 5)X2

+(t3 + 4t2 + 10t+ 10)X + 1.

The Galois automorphism

x 7→ (t+ 2) + tx− x2

1 + (t+ 2)x

was computed by Schoof and Washington [6, eq. (3.2)]. Despite the explicit
automorphism, this family is not suited to the JLSV1 method because the pa-
rameter t in the coefficients of the polynomial, is not linear: t, t2, t3, t4 appear
in the coefficients of ft(X).

B.4 GJL

The best pair of polynomials (f0, f1) we get using the GJL method is:

f0 = 2x6 + 3x5 − x4 + 2x3 − 3x2 − 2x− 3,

f1 = 4682288594364150x5 + 10520016140415817x4 − 17832477142237943x3

− 15171722661935206x2 + 1592160578567340x+ 1708993376270808.

We get α(f0) = −0.4 and α(f1) = −4.5.
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C Summary of parameters for the relation col-
lection

In this section, we summarized the parameters we use for the real computation
and the results of some experiments with other parameters without performing
the whole computation, but by inferring the results using a sample of some
special-qs. We denote by JLSV1 the polynomials described in Section 1 and by
JLSV0 the polynomials of Section B.2.

Dimension 2 2 2 3
Polynomial JLSV0 JLSV0 JLSV1 JLSV1

Sieving bounds 224.25, 224.25 224.25, 224.25 224.25, 224.25 221, 221

Smoothness bounds 226, 227 226, 227 226, 226 225, 225

Thresholds 252, 254 252, 254 252, 252 280, 280

Special-q side 0 1 1 1
Special-q-range ]224.25, 226[ ]224.25, 227[ ]224.25, 226[ ]221, 223.75[
Sieving region 229 229 229 225

Mean of norms 2118, 2203 — — 2144, 2128

Raw relations 10, 458, 616 — — 6, 171, 924
Unique relations 8, 256, 215 ≈ 16, 000, 000 ≈ 9, 900, 000 4, 999, 773
Needed relations ≈ 11, 561, 362 ≈ 11, 561, 362 ≈ 7, 915, 618 ≈ 4, 127, 378

Set of relations Incomplete
Complete
(probably)

Complete
(probably)

Complete

Time (CPU days) 375 ≈ 900 ≈ 400 359

Table 2: Informations about the relation collections.

D Sage verification script

To verify our computation of the individual logarithm in Section 5, we provide
Sage script in Listing 1 (tested using version 7.5.1).

Q.<x> = ZZ[]

p = floor (10^19* pi) + 45; n = 5
ell = 18872357657025660688767070155926911; cof = (p^n-1) // ell

f0 = x^5 - 5*x^4 - 5368736472*x^3 + 10737472959*x^2 - 5368736477*x - 2
f1 = 5851642500*x^5 - 29258212500*x^4 + 25042672429*x^3 + 37689292642*x^2 \

- 4215540071*x - 11703285000
varphi = f0

Fpn.<T> = GF(p^n, modulus=varphi)

gen = T + 1
target1 = 3141592653589793238*T^4 + 4626433832795028841*T^3 \

+ 9716939937510582097*T^2 + 4944592307816406286*T \
+ 2089986280348253421

vlog_gen = 6948023766431672832537048942111617
vlog_target1 = 2842707450406843989059381483536738

assert(gen^(cof * vlog_target1) == target1 ^(cof * vlog_gen ))

Listing 1: Sage verification script.
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