R. Barbulescu, P. Gaudry, and T. Kleinjung, The Tower Number Field Sieve, ASIACRYPT 2015, pp.31-55, 2015.
DOI : 10.1007/978-3-662-48800-3_2

URL : https://hal.archives-ouvertes.fr/hal-01155635

P. Gaudry, L. Grémy, and M. Videau, Collecting relations for the number field sieve in, LMS Journal of Computation and Mathematics, vol.6, issue.A, pp.332-350, 2016.
DOI : 10.1007/BFb0091538

URL : https://hal.archives-ouvertes.fr/hal-01273045

K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi, An Experiment of Number Field Sieve for Discrete Logarithm Problem over GF(p 12), Number Theory and Cryptography, pp.108-120, 2013.
DOI : 10.1007/978-3-642-42001-6_8

T. Kim and R. Barbulescu, Extended Tower Number Field Sieve: A New Complexity for the Medium Prime Case, CRYPTO 2016, pp.543-571, 2016.
DOI : 10.1109/TIT.1986.1057137

URL : https://hal.archives-ouvertes.fr/hal-01281966

E. Lehmer, Connection between Gaussian periods and cyclic units, Mathematics of Computation, vol.50, issue.182, pp.535-541, 1988.
DOI : 10.1090/S0025-5718-1988-0929551-0

R. Schoof and L. C. Washington, Quintic polynomials and real cyclotomic fields with large class number, Math. Comp, vol.50, issue.182, pp.543-556, 1988.
DOI : 10.2307/2008623

C. The and . Team, CADO-NFS, An Implementation of the Number Field Sieve Algorithm (2017), http://cado-nfs.gforge. inria.fr/, development version A Summary of the computation We summarize in Table 1 the running time of the four main steps of our computation using a three-dimensional relation collection