
HAL Id: hal-01568690
https://inria.hal.science/hal-01568690

Submitted on 25 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Longitude: A Privacy-Preserving Location Sharing
Protocol for Mobile Applications

Changyu Dong, Naranker Dulay

To cite this version:
Changyu Dong, Naranker Dulay. Longitude: A Privacy-Preserving Location Sharing Protocol for Mo-
bile Applications. 5th International Conference on Trust Management (TM), Jun 2011, Copenhagen,
Denmark. pp.133-148, �10.1007/978-3-642-22200-9_12�. �hal-01568690�

https://inria.hal.science/hal-01568690
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Longitude: a Privacy-preserving Location Sharing
Protocol for Mobile Applications?

Changyu Dong, Naranker Dulay

Department of Computing
Imperial College London

{changyu.dong,n.dulay}@imperial.ac.uk

Abstract. Location sharing services are becoming increasingly popular. Although
many location sharing services allow users to set up privacy policies to control
who can access their location, the use made by service providers remains a source
of concern. Ideally, location sharing providers and middleware should not be able
to access users’ location data without their consent. In this paper, we propose a
new location sharing protocol called Longitude that eases privacy concerns by
making it possible to share a user’s location data blindly and allowing the user
to control who can access her location, when and to what degree of precision.
The underlying cryptographic algorithms are designed for GPS-enabled mobile
phones. We describe and evaluate our implementation for the Nexus One Android
mobile phone.

1 Introduction

Location sharing is an increasingly popular function of social-networking services, al-
lowing users to share their location with family and friends. Examples include Google
Latitude [1], Yahoo Fire Eagle [2], and Loopt [3]. Perhaps the biggest user concern
about location sharing services is privacy. Many services allow the users to control who
will have access to their location data, over what period of time, and to what degree of
precision. However, for many users, the service providers are also a source of concern.
Will not the location sharing service use location data to the detriment of the user?

Users’ location data is normally saved by the service provider. Unfortunately, this
allows providers to track, profile and target users [4, 5] as well as aggregrate the data
and sell it to others. The typical approach to informing users is to provide a lengthy
webpage that states what the service provider may do with the data. The webpage is
usually written in a sufficiently obfuscated way to ensure that few users will bother
reading it, and often to hide the fact that providers want to give themselves a high degree
of access to the data. A related, but important concern, is that the service provider may
be the target of network intrusions and untrustworthy insiders, as well as requests from
law-enforcement agencies [6].

This paper describes a protocol called Longitude for location sharing that uses cryp-
tography to limit service provider access to location data. It is aimed at providers on the

? This work was supported by UK EPSRC research grant EP/F023294/1 - PRiMMA: Privacy
Rights Management for Mobile Applications.



Internet or middleware to provide location sharing blindly without the hassle of com-
pliance to data protection and location data requests. It ensures that users are able to
share their location but are not tracked. Note that the protocol is not a replacement for
traditional location-services like Google maps that translate locations into maps.

Naively, a user (Alice) could encrypt her location before sending it to the location
sharing provider (Luke), effectively protecting it from Luke or other adversaries. Alice
would have to securely disseminate the key to her friends (Bob and Carol) and revoke it
if she wanted to prevent access to any friend or if the key was disclosed. Rather than a
common shared key, Alice could establish pair-wise secret keys with each of her friends
or use asymmetric keys, both requiring a great deal more additional storage, computa-
tion and communication overheads. A more flexible approach is needed, particularly
for resource-constrained mobile devices.

Longitude has the following characteristics:

1. Privacy preserving. Longitude enables location-sharing providers or middleware to
disseminate user location data blindly. The data is specially encrypted. Alice can
control which of her friends can see her location, at what times and to what degree
of precision.

2. Simple key management: Alice only needs to keep her own key on her mobile de-
vice. She can remove any of her friends at any time without affecting other friends.
The revocation process can be done by Alice without requiring any interactions
with her friends.

3. Lightweight cryptography. Most of the computationally intensive cryptographic op-
erations in Longitude are done by the service provider, not on the mobile device.
Computation and battery life for mobile devices can be optimised further by pre-
computing cryptographic material when the mobile device is connected to a power
source.

4. Constant communication overhead. Longitude’s communication costs do not in-
crease with the number of friends (receivers). No matter how many friends a user
has, each piece of location data is encrypted and sent only once. Therefore, the
overhead of data communication is minimised.

The paper is organised as follows: in Section 2, we summarise the related work; in
Section 3, we discuss the system and security model as well as the initial assumptions;
in Section 4, we present Longitude, how to fine control user privacy and issues related
to user revocation; in Section 5, we explain the underlying cryptographic techniques;
in Section 6, we describe and evaluate a prototype implementation of Longitude for
Android phones; in Section 7, we conclude the paper and discuss our future plans.

2 Related Work

Location sharing services have attracted a lot of attention from industry [1–3], and
the development of GPS-enabled mobile phones makes it easy to sense and share user
location. According to [7], these services can be categorised into two types: (1) purpose-
driven, in which the requester has a specific need for the users location, e.g. coordinating
meetings, arranging transportation, sending reminders, and (2) social, in which location



information is shared simply because it is interesting or fun to do so. However, users
are concerned about their privacy and according to [8], existing industry guidelines and
implementations do not adequately address these concerns .

Previous research on location privacy has focused on anonymisation. For example,
in [9], the authors describe a middleware system which delays and reorders messages
from users within a mix zone to confuse an observer. In [10], a mechanism called cloak-
ing is proposed that conceals a user within a group of k people. To achieve this, the
accuracy of the disclosed location is reduced so that a user is indistinguishable from at
least k − 1 other users. In [11], k-anonymity is achieved by an ad-hoc network formed
by the user and surrounding neighbours, while [12] shows how to achieve k-anonymity
in a distributed environment where there are multiple non-colluding servers. Anonymi-
sation has a fundamental difference with location sharing. The goal of anonymisation is
to prevent others from relating a location to a user; on the other hand, the goal of loca-
tion sharing is to let authorised users know where a user is. Therefore, anonymisation
is not directly applicable here.

Most existing location sharing services do offer the users some form of controls
over their privacy. In [8], the authors examine 89 location sharing services and the most
widely adopted privacy controls are white list, being invisible, blacklist, group-based
permission and providing less detailed location. Several research projects in this area
have tried to provide more expressive and effective policy-based privacy controls. For
example, Locaccino [13] allows users to specify more fine grained policies based on
temporal and spatial restrictions. The pawS system [14] allows a user to use P3P policies
to define their location privacy settings and negotiate with the location service provider.
The main drawback in all such approaches is that the users must trust the provider,
its privileged employees and the security of the infrastructure. The user’s privacy will
also be compromised if the service provider is required to disclose the data to a law-
enforcement agency.

In a location sharing services, the provider usually acts as a broker to disseminate the
location information to the authorised receivers. In most of the cases the provider does
not need to know the data content in order to provide this service. In [15] a system for
sharing user location is described which provides protection from the provider. Users
use pairwise symmetric key encryption or asymmetric key encryption to prevent the
provider from learning their location. However, the user needs to store multiple keys.
Moreover the user has to send multiple copies of the same data, each encrypted under a
different key in order to let all her friends be able to get her location. The overheads of
key management, computation and communication increase linearly with the number
of friends.

Some work [16–19] has been done dealing with the problem of preserving privacy
in proximity services. Proximity service is a sub-type of location sharing service which
notifies and displays a friend’s location if the friend is nearby. While in Longitude we
consider the more general location sharing where a user can see a friend’s location no
matter the friend is near or far away from the user.



3 Models and Assumptions

3.1 Systems model

The Longitude protocol has the following parties: the location-sharing service provider
and the set of users registered with the provider. We assume that each user has a GPS-
enabled mobile phone that can sense the user’s current location and send it to the
provider. The provider stores the location and along with some user configuration data.
Users define which other users are authorised to receive their location. Authorised re-
ceivers can be removed at any time by the user. Users can also define the precision of
the location that will be seen by a particular receiver, e.g. accurate to 1km, 5km, 10km,
100km.

3.2 Security Model

We consider the service-provider to be honest-but-curious. That is, the service provider
will follow the protocol correctly, but will try to find out as much secret information as
possible. To simplify the presentation in the paper we assume that there are mechanisms
in place which ensure integrity and availability of the stored data. We also assume that
there is a proper authentication mechanism which allows the user to identify the ser-
vice provider and their friends and vice versa. In addition, we assume that each user
securely protects their cryptographic key on their mobile device. Since location data
will be transmitted through public networks and wireless networks, we assume that it is
possible that an unauthorised user can intercept the data.

4 Longitude Protocol

4.1 Overview

We first describe how the protocol works in general. The protocol is depicted in Figure
1. In the figure we only show two users, Alice and Bob.

The design of Longitude is based on proxy re-encryption [20]. In a proxy re-encryption
scheme, a ciphertext encrypted by one key can be transformed by a proxy function into
the corresponding ciphertext for another key without revealing any information about
the keys and the plaintext. Applications of proxy re-encryption include access control
systems [21] and searchable data encryption [22]. The details of the proxy re-encryption
scheme used in Longitude will be presented in Section 5.

To share her location with Bob, Alice and Bob must first register with the location
service provider (Luke). During registration, Alice and Bob also obtain public crypto-
graphic parameters and generate a public/private key pair locally on their mobile de-
vices. After registration, Bob can send a request to Alice asking her to allow him to
see her location. The request can be done out of band without involving Luke. In the
request, Bob provides a copy of his public key. If Alice agrees, she computes a re-
encryption key using Bob’s public key and her own private key (explained in detail in
section 5). She also decides how accurate the location should be for Bob and gener-
ates a corresponding precision mask (explained in section 4.2). The re-encryption key



Fig. 1. Overview of Longitude Protocol

and the precision mask are sent to Luke, and act as an authorisation policy that allows
Bob to retrieve Alice’s location. Alice can now send encrypted location data to Luke.
Bob’s public key can also be discarded by Alice. Luke only stores a user’s most recent
location. The previous location is overwritten by a newly received location. When Bob
wants to know where Alice is, he sends a request to Luke, who retrieves Alice’s last
encrypted location, applies the re-encryption key and policies defined by Alice then
sends it to Bob. Bob can then decrypt the location received from Luke and process it as
needed, e.g. to display Alice’s location on a map.

4.2 Location Encryption and Location Granularity

Proxy re-encryption, though very efficient, is still too time-consuming to encrypt large
volumes of data. To overcome this, in Longitude the actual data is encrypted by a more
efficient hybrid encryption scheme, where a secure symmetric stream cipher is chosen
to encrypt the location data under a random key and the random key is then encrypted
using the proxy re-encryption scheme. The stream cipher also allows Luke to modify
part of the ciphertext without rendering it undecryptable. In particular we can use this
to allow Alice to define the granularity that her location is seen by different friends.

A location consists of a latitude and longitude. Both parts are represented in the
format of decimal degrees. Obviously, a pair (51.49875, -0.17917) gives more accurate
information about Alice’s location than just (51.4, -0.1). In Longitude, we use this to
allow Alice to define precision masks for each friend (see Figure 2). Before encryp-
tion, locations are encoded as a pair of fixed-length ASCII strings. Each String has 11
characters in the format of “siiiffffff” where “s” is for the sign, “iii” is for the inte-
gral part and “fffffff” is for the fractional part. For example 51.49875 is encoded as
“+0514987500”. When using a stream cipher to encrypt, the stream cipher generates
a stream of random bits. The location strings are also converted into bits and XORed
with the random bit stream. Precision masks govern how many digits will be released
to friends. Each precision mask is a pair of integers from 0 to 11. Luke simply truncates
the encrypted location to the length specified by the precision mask before returning
it to a friend. The truncated encrypted location information can still be decrypted after
that because the decryption is another XOR. The benefits of using precision masks are
two fold: (1) Alice does not have to encrypt the same location at different precision
levels for different friends (2) applying the precision mask does not require Luke to
first decrypt the data, so Luke can do it blindly. An example of using precision masks
is shown in Figure 2. In the example, point 1 (+051.4987500, -000.1791700) is Alice’s
actual location , while point 2 (+051.49, -000.17) and point 3 (+051.4, -000.1) are the
displayed locations for two different precision masks (6,6) and (5,5), i.e. what would be
sent to two different friends.

Alice can also specify time-based policies to further control her privacy. An example
of such a policy could be “My co-workers should not see my location during weekends”.
The policies are specified by Alice as constraints and uploaded to Luke. The policies



Fig. 2. Applying precision mask to encrypted location

do not need to be encrypted because they contain no location data (although they might
contain other sensitive information). Luke is responsible for checking and enforcing
these policies when Alice’s location is requested by her co-workers.

4.3 Friend Revocation

If Alice wishes, she can revoke Bob from accessing her location. In Longitude, revoca-
tion can be accomplished in two different ways.

The first is called weak revocation. In this case, Alice simply sends a request to
Luke asking that Bob should not receive her location any more. Luke then removes
the corresponding re-encryption key. Since Alice’s key pair and Bob’s key pair are
generated independently, it is easy to prove that after the re-encryption key has been
removed by Luke, Bob will not be able to decrypt any of subsequent location updates
from Alice.

Weak revocation has low overhead and is secure if Luke and Bob do not collude.
However, if Luke colludes with Bob and does not remove the re-encryption key, Bob
will still be able to track Alice. To prevent collusion, Alice can use strong revocation by
updating her keys. Updating only changes two components in her keys and leaves the
other parts unchanged. Alice also updates the re-encryption keys for all friends except
Bob. After Alice has done this, Bob’s re-encryption key will not be able to decrypt
future locations encrypted using Alice’s new public key. Note this process does not
require Alice to interact with any of her friends. The update can be done by Alice herself
using existing information. If Alice is authorised to receive location updates from her
friends, those friends do not need to be involved either. The re-encryption keys they
generated for Alice are still valid because these keys are generated using an unchanged
component in Alice’s public key. The details of the key update algorithm can be found
in Section 5.

5 Proxy Re-encryption

Fig. 3. The proxy re-encryption scheme

The proxy re-encryption scheme used in Longitude is adapted from [21]. The scheme
has many desirable features, for example, the proxy function is unidirectional and the
user only needs to store her own key. We extended the scheme with a new key struc-
ture, support for user revocation and redesigned re-encryption and decryption functions.
Our scheme is also provably secure under the conventional Decisional Bilinear Diffie-
Hellman (DBDH) assumption [23], while the security of the original scheme is based on



a special extension of the DBDH assumption. The proxy re-encryption scheme consists
of 8 functions:

– The Setup funcition needs to be run once by the location service provider to ini-
tialise the service. It generates public parameters which will be used from then
on. The provider does not need to keep any secret information after running this
function.

– The Keygen function is run on the user’s mobile device when the user registers. It
also only needs to be run once.

– The Encrypt function is run on the user’s device to encrypt the location data which
is going to be sent to the provider.

– The RekeyGen function is run on the user’s device to generate the re-encryption
key for an authorised friend.

– The ReEncrypt function is run by the provider to transform location ciphertexts
sent to friends.

– The Decrypt function is run on a friend’s device to decrypt the locations received
from the provider.

– The KeyUpdate function is run to update the user’s key pair during strong revoca-
tion.

– The ReKeyUpdate function is run to update a re-encryption key during strong
revocation.

5.1 Cryptographic Scheme

Our scheme is constructed on top of bilinear pairings. We briefly review bilinear pair-
ings. We use the following notation:

– G1 and G2 are two cyclic groups of prime order q.
– g is a generator of G1.
– e is a bilinear pairing e : G1 ×G1 → G2 which has the following properties:

1. Bilinearity: for all u, v ∈ G1, a, b ∈ Zq , we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.
3. Computable: There exists an efficient algorithm to compute e(u, v) for all
u, v ∈ G1.

We now describe the proxy re-encryption algorithm in detail. The encryption/decryption
scheme is shown in Figure 3.

– Setup(k): Given the security parameter k, choose two groupsG1, G2 of prime order
q and a bilinear pairing e : G1 × G1 → G2. Then choose a random generator
g ∈ G1. Finally set the public parameter param = (G1, G2, e, g) for the system.

– Keygen(param): User i chooses xi, yi, zi uniformly randomly from Zq and com-
putes hi1 = gyi , hi2 = gzi , Zi = e(gxi , gzi). The user’s public key is pki =
(hi1, hi2, Zi), the user’s private key is ski = (xi, yi).

– Encrypt(m, pki, param): To encrypt a message (e.g. location) with the user i’s
public key, choose ri uniformly randomly from Zq , and compute ciphertext C =
(gri ,m · Zrii ).



– RekeyGen(ska, pkb, param): To generate a key which can transform a ciphertext
encrypted with a user a’s public key to a ciphertext which can be decrypted using
another user b’s private key, the user a chooses n uniformly randomly from Zq , and
computes rka→b = (hnb1, g

nh−xa
a2 ).

– ReEncrypt(Ca, rka→b, param): To transform a ciphertext encrypted with a’s pub-
lic key into a ciphertext which can be decrypted using b’s private key, the provider
computes:

c1 = e(gra , hnb1),

c2 = m · Zraa · e(gra , gnh
−xa
a2 )

= m · e(gxa , gza)ra · e(gra , gn) · e(gra , g−xaza)

= m · e(g, g)xazara · e(gra , gn) · e(g, g)−xazara

= m · e(gra , gn)

The new ciphertext Cb = (c1, c2).

– Decrypt(ski, Ci): The re-encrypted ciphtertext is decrypted as follows: c2 ·c
− 1

yi
1 =

m · e(gri , gn) · e(gri , hni1)
− 1

yi = m · e(g, g)rin · e(g, g)−riyin
1
yi = m

– KeyUpdate(ski, pki, param): The user only needs to change two components in
the pair: the secret key will be changed from (xa, ya) to (x′a, ya) where x′a is a
random integer from Zq and the public key will be changed from (ha1, ha2, Za) to

(ha1, ha2, Z
x′
a

xa
a ) .

– ReKeyUpdate(rka→b, param): For a re-encryption key (hnb1, g
nh−xa

a2 ), the user
raises both of the values to the power of x′

a

xa
, where x′a is the random integer gen-

erated in the KeyUpdate function. The new re-encryption key can be effectively
written as (hn

′

b1, g
n′
h
−x′

a
a2 ) where n′ = n · x

′
a

xa
.

5.2 Security Against an Unauthorised User

Our scheme is semantically secure against an unauthorised user. The notion of secure
against an unauthorised user is captured through the following game.

Game1: The adversary A is an unauthorised user:
Game Setup: The challenger runs Setup(k) to generate the public parame-
ter (G1, G2, e, g) given the security parameter k. It also uses Keygen(param)
to generate an arbitrary number of public/private key pairs pki/ski =
(hi1, hi2, Zi)/(xi, yi). Then the challenger randomly choose a pair pka/ska.

The public parameter and all the public keys are given to A.
Phase 1: A is given oracle access to Encrypt(·, pki, param). The adversary out-
puts a pair of message m0,m1 of the same length.
Challenge: The challenger randomly chooses b ← {0, 1} and then a ciphertext
C =Encrypt(mb, pka, param) is returned to A.
Phase 2: A continues to have oracle access to Encrypt(·, pki, param).
Guess: A outputs a bit b′ and wins the game if b′ = b.



Theorem 1. The proxy encryption scheme is semantically secure against an unautho-
rised user, i.e. for all PPT adversaries A, there exists a negligible function negl such
that:

Pr[Succgame1A (k)] ≤ 1

2
+ negl(k)

The proof of Theorem 1 relies on the Decisional Bilinear Diffie-Hellman (DBDH) as-
sumption [23] which is stated as follows: given g, gα, gβ , gγ ∈ G1 and r ∈ G2, every
probabilistic polynomial time adversaryA has only a negligible probability in deciding
whether r = e(g, g)αβγ or not, i.e.:

Pr[A(g, gα, gβ , gγ , e(g, g)αβγ) = 1]− Pr[A(g, gα, gβ , gγ , e(g, g)δ) = 1] ≤ negl(k)

Proof. Let’s consider the following PPT adversaryA′ who attempts to solve the DBDH
problem using A as a sub-routine. A′ is given a tuple (G1, G2, e, g, g

α, gβ , gγ , r) such
that g, gα, gβ , gγ ∈ G1 and r ∈ G2. A′ does the following:

Game Setup: A′ sets param = (G1, G2, e, g). A′ also chooses ya ∈ Zq ran-
domly and sets pka = (gya , gγ , e(gα, gγ)). A′ then chooses an arbitrary number
of random integers (xi, yi, zi) ∈ Zq and computes pki = (gyi , gzi , e(gxi , gzi)).
The public parameters and all the public keys are given to A.
Phase 1: Whenever A requires oracle access to Encryt(·, pka, param), A′
chooses a random integer ra ∈ Zq and encrypts the message using the corre-
sponding public key as (gra,m · e(gα, gγ)ra). At the end of phase 1, A outputs
two messages m0,m1 of the same length.
Challenge: A′ randomly chooses b← {0, 1} and sends (gβ ,m · r).
Phase 2: Whenever A requires oracle access to Encryt(·, pka, param), A′
chooses a random integer ra ∈ Zq and encrypts the message using the correspond-
ing public key as (gra,m · e(gα, gγ)ra).
Guess: A outputs a bit b′.

If b′ = b, A′ outputs 1, otherwise outputs 0. There are two cases:
Case 1: r = e(g, g)δ for some random δ. In this case the probability of b′ = b is

exactly 1
2 . So we have Pr[A′(g, gα, gβ , gγ , e(g, g)δ) = 1] = 1

2 .
Case 2: r = e(g, g)αβγ . In this case, (gβ ,m · r) is a proper ciphertext forA and the

probability of b′ = b is the same as Succgame1A (k). So we havePr[A′(g, gα, gβ , gγ , e(g, g)αβγ) =
1] = Succgame1A (k).

Since the DBDH problem is hard, we have

Pr[A′(g, gα, gβ , gγ , e(g, g)αβγ) = 1]−Pr[A′(g, gα, gβ , gγ , e(g, g)δ) = 1] ≤ negl(k)

After substitution, the above in-equation becomes Succgame1A (k) − 1
2 ≤ negl(k) and

hence Succgame1A (k) ≤ 1
2 + negl(k).

5.3 Security Against the Proxy

Our scheme is also semantically secure against the proxy (provider). This notion is
captured by Game2 which differs from Game1 only in the game setup step. In Game2,
the challenger also gives a set of re-encryption keys to the adversary.



Theorem 2. The proxy encryption scheme is semantically secure against the proxy i.e.
for all PPT adversaries A, there exists a negligible function negl such that:

Pr[Succgame2A (k)] ≤ 1

2
+ negl(k)

Proof. The proof here is very similar to the proof of Theorem 1 except that in the Game
Setup step, A′ needs to generate a set of proxy keys and send them to A. To generate a
re-encrypt key rka→b,A′ chooses n, n′ randomly from Zq and set rka→b = (hnb1, g

n′
).

Note that this re-encryption key is not correctly formed, but it has the same distribution
as a correctly formed re-encryption key. ThereforeA cannot distinguish this simulation
from a real-world attack in which all values have the correct form. In other words, the
view ofA is indistinguishable from a real-world attack. The rest of the proof is the same
as the previous proof.

6 Implementation and Evaluation

6.1 Implementation

Fig. 4. The architecture of the Prototype Application

We implemented Longitude in Java for testing and evaluation purposes. The archi-
tecture of a small application and location sharing service using Longitude is as shown
in Figure 4.

The client side has three components: (1) a user interface which provides the basic
functionality for displaying user locations visually and performing management and
configuration tasks; (2) a location update service which runs in the background to sense
user location, encrypt it and send it to the server on schedule; (3) a pre-computing
service which runs in the background only when external power has been connected to
the device (see Section 6.2). The client side runs on the Android platform [24].

The server side has persistent data storage for location data and user configurations
including re-encryption keys, precision masks and time-based policies. A daemon runs
on the server and receives updates and request from clients. It can run on any system
with Java 1.1 or above.

We did not find any cryptographic library in Java which supports bilinear pairing,
so we implemented our own pairing library1. The algorithm implemented for pairing
computation was the BKLS algorithm in Jabobian coordinates as described in [25]. We
built all the underlying algebraic structures such as finite fields and elliptic curves using
the BigInteger class in standard Java. We used the AES implementation provided by
SunJCE.

The security parameters are taken from [26]. Namely, G1 is an order-q subgroup of
a non-supersingular elliptic curve over a finite field Fp, where q is a 160-bit prime and

1 Jpair: http://sourceforge.net/projects/jpair/



p is a 512-bit prime. G2 is a subgroup of the finite field Fp2 . The overall security of
this setting is roughly equivalent to 1024-bit RSA. We used AES-OFB [27, 28] as the
stream cipher. A key length of 128-bit was used.

6.2 Optimisation

Performance is an important issue for mobile applications. To enable location sharing
service, users need to run a client-side application using the protocol on their mobile
device. The application typically needs to be run in the background to collect and update
location data periodically. If the application consumes too much resource, it will slow
down the foreground applications and will drain the battery.

Comparing to the location sharing services, the major performance overhead using
Longitude comes from the cryptographic operations. To minimise the performance im-
pact, Longitude is designed to distribute these operations between the mobile device
and the server. To encrypt the location, 2 operations are needed on the mobile device:
encryption of the location using the stream cipher and encryption of the random key
using the Encrypt function of the proxy encryption scheme. To decrypt location ci-
phertext, 2 operations are needed on the mobile device: decryption of the random key
using the Decrypt function and decryption of the location ciphertext using the stream
cipher. Stream ciphers are usually very efficient [29] and their impact on performance
is negligible. Although the proxy re-encryption scheme requires bilinear pairing oper-
ations which are computationally expensive, these operations are done on the server.
The Encrypt and Decrypt functions which are performed on the user’s mobile de-
vice require only group exponentiations and group multiplications. More precisely, the
Encrypt function requires only 1 exponentiation in group G1, 1 exponentiation and 1
multiplication in group G2. The Decrypt function requires only 1 exponentiation and 1
multiplication in group G2.

The Encrypt function is optimised further using the offline/online cryptography
paradigm [30, 31]. The ciphertext produced by the function is in the form of (gra ,m ·
Zraa ) where m is the location plaintext, g and Za are components in the public key and
ra is a random integer. The function can be naturally divided into two phases: a pre-
computing (offline) phase and a final-encryption (online) phase. The pre-computing
phase can be performed when the mobile device is being charged and no foreground
application is running. In this phase multiple (gra , Zraa ) pairs are computed and stored.
In the final-encryption phase when the application needs to send a location update to
the server, a pair which is pre-computed in the pre-computing phase is retrieved from
local data storage and a multiplication is performed to assemble the final ciphertext
(gra ,m · Zraa ). The used pair is then erased from the device. In this way we can sig-
nificantly improve the performance and reduce the energy consumpition at the cost of
some additional storage space, as we will see in Sections 6.3 and 6.4.

6.3 Performance Evaluation

The performance overhead of Longitude mainly comes from the cryptographic oper-
ations. Here we present our performance evaluation of these cryptographic operations



in terms of execution time. All the numbers are the average time in milisecond for 10
executions.

Operation Time (ms) Energy (mJ)
User Key Pair Generation 1693 945
Re-encryption Key Generation 1160 635
Public Key Encryption: Pre-computing Phase 427 245
Public Key Encryption: Final-encryption Phase 0.3 0.2
Stream Cipher Encryption 0.6 0.2
Public Key Decryption 32 10.5
Stream Cipher Decryption 1 0.7
Strong Revocation: User Key Update 94 14.6
Strong Revocation: Re-encryption Key Update 697 395

Table 1. Speed & energy consumption of Cryptographic operations on Nexus One Phone

The results of the client side tests are summarised in Table 1. The client runs on a
Nexus One phone which has a 1GHZ Qualcomm QSD8250 CPU and 512 MB DRAM.
From the table we see that the most time-consuming operation is the user key pair gen-
eration operation, which takes about 1.7 seconds. This should not be a problem because
the user only runs it once when starting to use the service. Similarly, the other key gen-
eration and key update operations are slow but run only occasionally. The frequently
used operations are encryption and decryption . The stream cipher encryption and de-
cryption are very fast and can be done in 0.6 and 1 millisecond respectively. The public
key decryption operation is much faster comparing to the public key encryption oper-
ation. As we can see, the optimisation we mentioned in section 6.2 can improve the
performance significantly. The final-encryption phase is extremely fast, less than 1 ms.

The only cryptographic operation that runs at the service provider is the re-encryption
operation. We measured this on a MacBook Pro laptop with an Intel Core2 Duo 2.5
GHZ CPU and 4 GB RAM. The operation takes 42 milliseconds.

6.4 Energy Consumption

We also measured the energy consumption of the client side cryptographic operations
on the Nexus One. The measurement was done using PowerTutor [32]. The results are
shown in Table 1 and given in Millijoules.

The capacity of the standard battery of Nexus One (1400mAh, 3.7V) is 18648
Joules. Therefore, 1000 full encryptions (including the pre-computing, the final-encryption
and the stream encryption operations) will consume about 1.3% of the battery energy. If
the pre-computing is done beforehand, then only the final-encryption and the stream en-
cryption operations are needed for real-time encryption. In this case, 1000 encryptions
will consume only 0.002% of the battery energy. The space overhead of storing 1000
precomputed values is about 200 KB. For decryption, 1000 decryptions (including the



public key decryption and the the stream decryption operation) will consume 0.06% of
the battery energy.

An interesting question is how long can 1000 pre-computed values last? Will they
run out before the next recharge? In most cases, no. Apparently, the more frequently
the phone updates its location, the faster the stored values will be exhausted. How-
ever, GPS and wireless radio are energy consuming. Therefore, the more frequently the
phone updates its location, the shorter the battery life is. For a heavy user who updates
his location every minute, the battery usually lasts less than a day. While 1000 pre-
computed values last 16.7 hours in this case. If the update frequency is 10 minutes, then
the battery will last 2-3 days while 1000 pre-computed values will last about 7 days.

6.5 Communication Overhead

The location ciphertexts produced by the stream cipher have the same length as the
location plaintexts. Therefore the communication overhead comes from the encrypted
random stream cipher key. The ciphertext of a encrypted key consists of an elliptic
curve point and an element in the field Fp2 . In our setting where p is 512-bits, the size
of the ciphertext is about 1500 bits after point compression [33]. Further optimisation
is possible by choosing elliptic curves with a larger embedding degree and by using
compressed pairings [34].

6.6 Security Evaluation

In Section 5 we proved that Longitude’s proxy re-encryption is semantically secure,
which means that an adversary cannot get any information about the user’s location by
directly examining the ciphertext. However, there are three possible indirect attacks.

Since location data is sent through the Internet, an adversary may be able to infer
the user’s location given the user’s IP address. Fortunately, this attack only allows the
adversary to get an imprecise location, usually to the level of city or organisation. In
addition, most mobile operators provide only a NATed Internet access, which means
that an adversary will only see the gateway’s IP address thus it is even harder for the
adversary to infer the user’s location. Therefore, in Longitude we did not implement
any IP obfuscation mechanism. If needed, an external service such as Tor [35] could be
used to provide anonymised communication.

If a query for a user’s location is followed by a location-based query to another ser-
vice provider, for example, a map-service, like Google Maps, then it’s possible for the
location sharing service to collude with the other service to correlate the two requests
to discover a user’s location. To counter this attack, the application would need to use
offline data or perform requests to several suitably random locations.

Although precision masks allow users to be imprecise about their location, they
do not prevent a recipient or intelligent software from inferring a more precise location,
for example, by using background knowledge (user’s home, workplace, favourite shops,
previous locations). Depending on the circumstances and the intent of the user, Longi-
tude mobile applications could generate precision masks more intelligently using viable
but incorrect locations. However, even with cleverer concealment it’s always possible
that a recipient will learn the user’s exact location and rightly or wrongly infer that the



user is deliberately concealing their exact location from them, leading to a loss of trust
and perhaps the recipient reciprocating or taking some other action.

7 Conclusion and Future Work

In this paper, we presented a new privacy preserving location sharing protocol called
Longitude. The most significant features of Longitude are that the location sharing
provider only processes encrypted locations that it unable to decrypt, supports different
granularities of locations for different receivers, and low key management, computation
and communication overheads. In addition, Longitude’s proxy re-encryption scheme
is provably secure and the cryptographic functions optimised for mobile platforms. A
prototype was implemented in Java on the Nexus One Android mobile phone and the
CPU-time and energy consumption were evaluated.

One type of privacy policy which has proven to be useful in location sharing services
are selective location-based policies. For example, Alice may, when at home, only want
her families to be able to track her but not her friends. This type of policy can be easily
implemented if the location sharing service provider has access to the user’s location.
But how could we support this type of policy is the provider only holds encrypted
data? We plan to investigate this problem further, looking at schemes such as searchable
encrypted data [22] and attributed-based encryption [36]. We would also like to explore
how to provide more services upon encrypted data, as suggested in [37].

References

1. : Google Latitude. http://www.google.com/latitude
2. : Yahoo fire eagle. http://fireeagle.yahoo.net/
3. : Loopt. http://www.loopt.com/
4. Raphael, J.: Three Reasons Why I Won’t Be Using Google Latitude. http://www.

pcworld.com/article/158953 (2009)
5. Turoczy, R.: Google latitude: Ready to tell your friends (and google) where

you are? http://www.readwriteweb.com/archives/google_latitude_
location_aware.php (2009)

6. Gralla, P.: Privacy group asks ftc to investigate google. http://www.pcworld.
com/businesscenter/article/161497/privacy_group_asks_ftc_to_
investigate_google.html (2009)

7. Tang, K.P., Lin, J., Hong, J.I., Siewiorek, D.P., Sadeh, N.: Rethinking location sharing: Ex-
ploring the implications of social-driven vs. purpose-driven location sharing. In: UbiComp.
(2010)

8. Tsai, J.Y., Kelley, P.G., Cranor, L.F., Sadeh, N.: Location-sharing technologies:
Privacy risks and controls. http://cups.cs.cmu.edu/LBSprivacy/files/
TsaiKelleyCranorSadeh_2009.pdf (2010)

9. Beresford, A., Stajano, F.: Location privacy in pervasive computing. Pervasive Computing,
IEEE 2(1) (jan-mar 2003) 46 – 55

10. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial
and temporal cloaking. In: MobiSys. (2003)



11. Hashem, T., Kulik, L.: Safeguarding location privacy in wireless ad-hoc networks. In:
UbiComp’07: Proceedings of the 9th international conference on Ubiquitous computing,
Berlin, Heidelberg, Springer-Verlag (2007) 372–390

12. Zhong, G., Hengartner, U.: A distributed k-anonymity protocol for location privacy. In:
Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Con-
ference on. (9-13 2009) 1 –10

13. : Locaccino. http://www.locaccino.org
14. Langheinrich, M.: A privacy awareness system for ubiquitous computing environments. In:

UbiComp ’02: Proceedings of the 4th international conference on Ubiquitous Computing,
London, UK, Springer-Verlag (2002) 237–245

15. Freudiger, J., Neu, R., Hubaux, J.P.: Private sharing of user location over online social
networks. In: 3rd Hot Topics in Privacy Enhancing Technologies (HotPETs 2010). (2010)

16. Ruppel, P., Treu, G., Küpper, A., Linnhoff-Popien, C.: Anonymous user tracking for
location-based community services. In: LoCA. (2006) 116–133

17. Zhong, G., Goldberg, I., Hengartner, U.: Louis, lester and pierre: Three protocols for location
privacy. In: Privacy Enhancing Technologies. (2007) 62–76

18. Mascetti, S., Freni, D., Bettini, C., Wang, X.S., Jajodia, S.: Privacy in geo-social net-
works: proximity notification with untrusted service providers and curious buddies. CoRR
abs/1007.0408 (2010)

19. Siksnys, L., Thomsen, J.R., Saltenis, S., Yiu, M.L.: Private and flexible proximity detection
in mobile social networks. In: Mobile Data Management. (2010) 75–84

20. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography.
In: EUROCRYPT. (1998) 127–144

21. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1) (2006)
1–30

22. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for untrusted
servers. In: DBSec. (2008) 127–143

23. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Com-
put. 32(3) (2003) 586–615

24. : Android platform. http://www.android.com/
25. Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of tate pairing in projective coor-

dinate over general characteristic fields. In: ICISC. (2004) 168–181
26. Scott, M.: Computing the tate pairing. In: CT-RSA. (2005) 293–304
27. NIST: NIST FIPS-197: Specification for the ADVANCED ENCRYPTION STANDARD
28. NIST: NIST SP 800-38A: Recommendation for Block Cipher Modes of Operation
29. Fournel, N., Minier, M., Ubéda, S.: Survey and benchmark of stream ciphers for wireless

sensor networks. In: WISTP. (2007) 202–214
30. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital schemes. In: CRYPTO. (1989)

263–275
31. Guo, F., Mu, Y., Chen, Z.: Identity-based online/offline encryption. In: Financial Cryptog-

raphy. (2008) 247–261
32. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R., Mao, Z.M., Yang, L.: Accurate online

power estimation and automatic battery behavior based power model generation for smart-
phones. In: Proceedings of CODES+ISSS. (2010)

33. IEEE: IEEE P1363: Standard specifications for public key cryptography
34. Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: CRYPTO. (2004) 140–156
35. : Tor. http://www.torproject.org/
36. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional

encryption: Attribute-based encryption and (hierarchical) inner product encryption. In: EU-
ROCRYPT. (2010) 62–91



37. Popa, R.A., Zeldovich, N., Balakrishnan, H.: Cryptdb: A practical encrypted relational dbms.
Technical Report MIT-CSAIL-TR-2011-005, MIT (2011)


