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Abstract. In this paper we address the problem of estimating the phase fromator

images acquired with di erential{interference{contrast microscopy. In particular, we

consider the nonlinear and nonconvex optimization problem obtainedby regularizing

a least{squares{like discrepancy term with an edge{preserving factional, given by

either the hypersurface potential or the total variation one. We investigate the
analytical properties of the resulting objective functions, proving the existence of
minimum points, and we propose e ective optimization tools able to obtain in both the

smooth and the nonsmooth case accurate reconstructions with @duced computational
demand.
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1. Introduction

Since their invention, microscopes have been a powerful tool in ariedly of disciplines
such as biology, medicine and the study of materials. In particularhe branch of optical
microscopy (also referred as light microscopy) has been sucadsfapplied in biomed-
ical sciences and cell biology in order to study detailed structuresi@d understand their
function in biological specimens. The optical microscope uses visiblentifpr illuminat-
ing the object and contains lenses that magnify the image of the @ut and focus the
light on the retina of the observer's eye [1]. Optical microscopy inclegd several tech-
niques, such as bright{ eld, dark{ eld, phase contrast, di erertial interference contrast
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(DIC), uorescence and confocal microscopy. We refer to theank of Wilson and Bacic
[2] for a comparison of the advantages and limitations of these tethues.

The technique of interest in this paper is DIC microscopy, designed Bllen, David
and Nomarski [3] to overcome the inability to image unstained transpent biological
specimens, which is typical of bright{ eld microscopes, while avoidingt the same time
the halo artifacts of other techniques designed for the same page, such as phase con-
trast. DIC microscopes are able to provide contrast to images bym@oiting the phase
shifts in light induced by the transparent specimens (also called pra®bjects) while
passing through them. This phenomenon is not detected by the ham eye, neither
by an automatic visual system, and occurs because of the intetiao of light with dif-
ferent refractive indexes of both the specimen and its surroungjrmedium. In DIC
microscopy, such phase shifts are converted into arti cial blacknal white shadows in
the image, which correspond to changes in the spatial gradient dfet specimen's optical
path length. Furthermore, this technique has been widely recogeid by its possibility
to use full numerical apertures in the objective, which results in higcontrast images
at high lateral resolution.

One disadvantage of DIC microscopy is that the observed imagesnat be easily
used for topographical and morphological interpretation, becae the changes in phase
of the light are hidden in the intensity image. It is then of vital importance to recover
the specimen's phase function from the observed DIC images. Theolplem of phase
estimation in optical imaging has been widely studied, as shown in theview made in
[4]. Previous work for reconstructing the DIC phase function hasden done by Munster
et al [5], who retrieve the phase information by deconvolution with a Wner lter; line
integration of DIC images is proposed by Kam in [6], supposing that thine integra-
tion along the shear angle yields a positive de nite image, which is not adws the case
since the intensity image is a nonlinear relation between the transmiss function of
the specimen and the point spread function of the microscope. Ketal [7] introduced
the use of transport of intensity equation to retrieve the phaseufction; Bostan et al
[8] also used this approach, including a total variation regularizatioterm to preserve
the phase transitions. Finally, in the work of Preza [9, 10, 11, 12], ¢hphase estimation
in DIC microscopy has been addressed by considering the minimizatioha Tikhonov
regularized discrepancy term, which is performed by means of a med nonlinear con-
jugate gradient (CG) method.

In this work, we are interested in reconstructing the phase by minimation of a
penalized least{squares (LS) term as proposed in [11], suitably gealzed in order to
extend the one color acquisition to polychromatic ones. Instead afrst order Tikhonov
regularization, which tends to recover oversmoothed images, wensider two di erent
penalties, the rst one being the total variation (TV) functional which is suitable for
piecewise constant images, while the second is the hypersurface&S)YHbotential [13],
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which is a smooth generalization of the TV able to reconstruct bothhsrp and smooth
variations of the unknown phase. Since the latter choice leads toeghminimization of
a smooth functional, we consider a limited memory gradient method, mhich suitable
adaptive steplength parameters are chosen to improve the coryence rate of the al-
gorithm. As concerns the TV{based model, we address the minimizah problem by
means of a recently proposed linesearch{based forward{backdianethod able to handle
the nonsmoothness of the TV functional [14].

We performed di erent numerical tests on synthetic realistic imageand we com-
pared the proposed methods with both the original CG method pragsed in [11], ex-
ploiting a gradient{free linesearch for the computation of the stdpngth parameter, and
standard CG approaches. The results we obtained show that theefformance of the
limited memory gradient method in minimizing the LS+HS functional is mub better
than those of the CG approaches in terms of number of functionfgdient evaluations
and, therefore, computational time. Moreover, despite the di elties due to the pres-
ence of a nondi erentiable term, also the linesearch{based forwbackward method
proposed in the case of the TV functional is able to provide recomstted images with
a computational cost comparable to that of the gradient methodsthus leaving to a
potential user freedom to choose the desired regularizer witholaising in e ciency.

The organization of the paper is as follows. In Section 2, the DIC ggs for
transmitted coherent light is described, together with the corrggnding polychromatic
image formation model. Furthermore the nonlinear inverse problemf dhe phase
reconstruction and its corresponding optimization problem are psented, proving some
analytical properties of the objective function, such as the exishce of minimum
points. In Section 3 the iterative optimization algorithms designed taddress the phase
reconstruction problem are detailed. In Section 4 numerical simulahs on synthetic
images are presented in order to evaluate e ciency and robustre®f the considered
approaches. Conclusions and perspectives are included in Section 5

2. Model and problem formulation

2.1. The DIC system

DIC microscopy works under the principle of dual beam interfereecof polarized light,
as depicted in Figure 1. Coherent light coming from a source is pasghatbugh a polar-
izer lens. Every incident ray of polarized light is splitted by a Nomarskprism placed
at the front focal plane of the condenser. This splitting producesvo wave components
{ ordinary and extraordinary { such that their corresponding eletromagnetic elds are
orthogonal and separated at a xed shear distance X along a speci ¢ shear direction,
whose angle ¢ formed with the x{axis is denominated shear angle. The specimen is
sampled by the pair of waves; if they pass through a region whereetie is a gradient
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in the refractive index, the waves will be di erentially shifted in phase After this, they
will reach a second Normarski prism placed at the back focal plané the objective
lens. This prism introduces an additional phase shift, called the biagtardation and
indicated with 2, which helps to improve the contrast of the observed image and to
give the shadow{cast e ect characteristic of DIC images (see Figai2). The interference
of the two sheared and phase shifted waves occurs inside this priand, thus, the two
waves are recombined into a single beam that goes through a secpnthrizer lens called
the analyzer. Further details on the DIC working principle can be faud in the work of
Murphy [15] and Mehta et al [16].

Analyzer +

2nd Nomarski

\ & ) Wl Prism translation
Prism \ 9 b

for bias adjustment

(2A0)

Objective

i
i <— Shear distance (2A%)
Specimen !

Condenser

Ordinary wave
1 SF Nomarski

Prism -e-e=e= Extraordinary wave

Polarizer
olarize z (Optical axis)

Non-polarized light x (Shear direction)
(from source)

y

Figure 1. Transmitted light Nomarski DIC microscope. The dierence of colors of
the ordinary and extraordinary waves indicates that their electromagnetic elds are
orthogonal to each other.

The observed images will have a uniform gray background on regionkere there
are no changes in the optical path, whereas they will have dark staws and bright
highlights where there are phase gradients in the direction of she&aving a 3D relief{
like appearance (see Figure 2). It is important to note that the sldows and highlights
indicate the signs and slope of phase gradients in the specimen, arat necessarily
indicate high or low spots [3].

In this paper we consider the polychromatic rotational diversity mdel [17], which
is an extension of the model presented in [11] to color image acquisitidn this model
K RGB color images are acquired by rotating the specimelk times with respect to
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(b)

Figure 2. Phase functions of two phantom specimens and corresponding neiless
DIC color images: (a) phase function of the \cone" object, (b) DIC image of the cone,
(c) phase function of the \cross" object, (d) DIC image of the cross. The images have
been computed by using model (1) and setting the shear to 2x =0:6 m, the bias to
2 = =2rad and the shear angleto = =4 rad.

the shear axis, which results irK rotations of the amplitude point spread function.
Typically K equals 2 and the di erence between the two angles is2. Actually, for a
given shear angley, the acquired imagek is related to the directional derivative of the
object along the direction ¢ [10]. Then the 2D image can be reconstructed from two
orthogonal directional derivatives [11]. In this con guration, therelation between the
acquired images and the unknown true phaseis given by

= 2
(0 )y =a (he . e ) " +( ks (1)
fork=1;:::;K; " =1;2,3;j 2 , where

k is the index of the angles that the shear direction makes with the horizontal
axis [11]," is the index denoting one of the three RGB channels arjd= (j1;]>2)

is a 2D index varying in the set = f1;:::;Mg f 1;:::;Pg, M and P meaning
the size of the acquired image, which is determined by the resolutiohthe CCD

detector of the microscope, with typical value of 1388 1040 pixels;

- is the “{th illumination wavelength. The object is illuminated with white light,
whose wavelengths range from 400 nm to 700 nm. The digital acquisit system
of the microscope comprises a color bandpass optical Iter which iates the RGB
wavelengths, acquired separately by the CCD detector [15]. Sinceistselected a
narrow band for each color, we use the mean wavelength at each band.

O.. 2 RMP is the "™ color component of thek™ discrete observed image
0= (0 430 550 ) 2 RMP 3

2 RMP is the unknown phase vector anag '= ~ 2 CMP stands for the vector
dened by (e '= *);=e i
he. . 2 CMP is the discretization of the continuous DIC point spread function
[10, 18] corresponding to the illumination wavelength- and rotated by the angle
kK , ..,

he (xy)=-e' p. Re (x xy)' € p. R (x+ xy)7 ;

NI =
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where p .(X;y) is the coherent PSF of the microscope's objective lens for the
wavelength -, which is given by the inverse Fourier transform of the disk support
function of amplitude 1 and radius equal to the cuto frequencyf. = NA= - [10],
being NA the numerical aperture of the objective lens, andRy is the rotation
matrix which rotates the coordinates according to the shear anglg;

h; h, denotes the 2D convolution between the twM P imageshs; h,, extended
with periodic boundary conditions;

« - 2 RMP is the noise corrupting the data, which is a realization of a Gaussian
random vector with mean0 2 RMP and covariance matrix 2l p )2, wherel p )2
is the identity matrix of size (MP )?;

a; 2 R is a constant which corresponds to closing the condenser apegufown to
a single point.

2.2. Least{squares data delity

The phase reconstruction problem consists in nding an approximesn of the unknown
phase vector from the observed RGB image®;;:::;0. Let us rst address this
problem by means of the maximum likelihood (ML) approach. Since theK3images
o . are corrupted by Gaussian noise, then the negative log likelihood @foh image is a
least{squares measure, which is nonlinear due to the presencehs &xponential and the
squared modulus in (1). In the case of white Gaussian noise, staitistly independent
of the data, the negative log likelihood of the problem is the sum of theegative log
likelihoods of the di erent images, namely the following t{to{data term

XX X h Sl2

Jo( ) = (O ) a (g e'™ )" (2)
=1 k=1 j2

Then the ML approach to the phase reconstruction inverse prolste consists in the
minimization of the function in (2):

min Jo( ): 3)

2 RMP

In the next result, we collect some properties afy that will be useful hereafter.

Lemma 1 LetJo:RMP I R be dened as in (2). The following properties hold true:

(i) Jo( +c1)= Jo( ), 8c2R, wherel 2 RMP is the vector of all ones.
(i) Jo is bounded.
(i) Jo is an analytic function onRMP and thereforeJ, 2 C* (RMP).

(iv) Suppose that— is rational for all ; *02f1;2;3g. Then there existsT > 0 such
that Jo is periodic of period T with respect to each variable, i.e. for any 2
dening € =( jr)r2 =(0;:::;0;1,0;:::;0) 2 RMP, where j, is the Kronecker
delta, it holds

Jo( + Tej): Jo( ); 8 2 RMP
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2

. P .
Proof. (i) Set Ju( )= (he . €' ) ? = (he. )re 1Ci D= If the thesis
r2
holds for J-; , then it holds also forJ,. We have
X 2 X 2
Jug ( +cl)=  (hg e 'G5 = gies 2T gy e i 0T = gl ()
r2 r2

(i) By applying the triangular inequality and the fact that je ' i=°j=1,j 2 , we
have

2 | 32
. - >@ >(( X . . X . . 1 _ 2
j90( )i 4j(oc )ji+ & j(he )ej et D=5
=1 k=1 j2 r2
1,32
XX X ' X S
= 4j(oc )jj+ & jthe )ij 5
=1 k=1 j2 r2

(iii) If J-x; is an analytic function onRMP , then J, is given by sums and compositions of
analytic functions and thus it is itself analytic [19, Propositions 1.6.2 ah1.6.7]. Hence
we focus onJ-y;. Since Q. .); 2 C, it can be expressed in its trigonometric form

(he. )= €, with ;2R o, 2[0;2 ). Then we can rewriteJ-,; as follows
X 2 x 2
Jug () = rcos(r (=) + esin(e (5 =)
r2 r2

and the thesis follows from the analyticity of the functions sin§, cos() and ()2.

(iv) It is easy to see thatJ, is the sum of three periodic functions of variable; whose
periodsare2 ;,2 ,and2 3, respectively. By recalling that the sum of two periodic
functions is periodic if the ratio of the periods is a rational number, & can conclude
that Jo is periodic.

2.3. Introducing regularization

When the assumption of rationality on the wavelengths ratios holdsjsing points (iii)
and (iv) of Lemma 1, it is easy to see that the solution to problem (3)xésts. However,
points (i) and (iv) imply that the solution is not unique and may be detemined only
up to an unknown real constant or to multiples of the periodl' w.r.t. any variable ;.
Furthermore, Jg is a nonconvex function of the phase, thus it may admit several local
minima as well as saddle points. In the light of these considerationsgwan conclude
that (3) is a severely ill{posed problem, which requires regularizatioim order to impose
some a priori knowledge on the unknown phase. In particular, wegpose to solve the
following regularized optimization problem

min J( ) Jo( )+ Jr(); (4)
2 RMP
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where Jg is the least{squares (LS) distance de ned in (2) andr is a regularization
functional. In particular, we consider hypersurface (HS) poterdl de ned as [20, 21]
X 9
Jr( )= (D )NI+UD )i+ % (5)
j2

where > 0 is a regularization parameter, the discrete gradient operatd@ : RMP !
R?MP is set through the s}andard nite di erencelwith periodic boundaryconditions

(O Y= AR e o e e s

(D )ivi2)2 jrietl  jwie

and the additional parameter 0 plays the role of a threshold for the gradient of the
phase. The choice of this kind of regularization term instead of thast order Tikhonov
one used e.g. in [11, 12] lies in the capability of the HS regularizer to lagh both as a
Tikhonov{like regularization in regions where the gradient assumesnsll values (w.r.t.

), and as an edge{preserving regularizer in regions where the gext is very large, as
it happens in the neighborhood of jumps in the values of the phase.ok&over, we will
also consider the case in which the regularization term is given by thtasdard total
variation (TV) functional [22], which is de ned exactly as in (5) by seting =0. We
remark that, even if the HS term can be seen as a smoothed versadrthe TV one, their
e ect is quite di erent on the recovered images since, e.g., reconsttions provided by
HS can be free of cartoon e ects, typical of TV regularization. Fiahermore, one should
be careful to adopt appropriate minimization algorithms in both case since the use of
a method designed for smooth optimization to minimize the LS + HS futional with
a very small typically leads to severe numerical instability problems.

Problem (4) is still a di cult nonconvex optimization problem and, when =0, it
is also nondi erentiable. Some properties of the objective functioh are now reported.

Lemma 2 LetJ:RMP | R be dened as in (4). Then:
(i) J( +cl)=J(),8c2R.
(i) If > 0,thenJ 2 C! (RMP) andr J is Lipschitz continuous, namely there exists
L > O such that
ke J( ) r J( )k» LKk ko, 8; 2RMP:

Proof. (i) It follows from the relation (D( + c1))j,j, = (D )j.;,-

(i) Point (iii)) of Lemma 1 states that Jo 2 C! (RMP) and the same property holds
for Jr when > 0, hencel is the sum of twoC?! (RMP) functions. It is known that
r Jr is Lr{Lipschitz continuous with Lg =8 = 2. We prove that alsor Jg is Lipschitz
continuous. If we introduce the residual image,. . = (he, . e = ) ’ O . and x
s2 , the partial derivative of Jo and the entries of the Hessian matrix 2J, are given
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by
@ x X X 4 n o _ (o)

@%( ) - —(r; )jIm e =7 (hy ) s(he - €7 ) (6)

S =1 k=1 j2
@o( ) _ XXX 2
=4 —Imf#sgImf#,g+
@@ 1 kel |2 2
(r; \)jR nei(t §)= - Ty 0.
2 e (hk;\)j s(hk;‘)j t stfs (7)

where#, = e ' »= (h. ) p(h. . €= )] (p2 )and Re(); Im(P) denote the real
and imaginary parts of a complex number. Sincgfpj | (he. .); o o J(he )rj, We

have |

r 2
@J XX X 2 ’ X .
o) Zithe )y dithe )y d e )+
t='s =1 k=1 j2 r2
e )] X )
B2 (v )y dithie )i d+ithe )y - il )i
r2
and therefore
X @do( )
kr 2Jo( )k; = max 0
0( ) 1 2 " @t@s
XXX He _ s 5 . . : :
4 — 2maxj(h; ) dHie + Hic +(0¢ i1 maxj(hi ); d + Hie
=1 k=1 j2
=Ly, 8 2RMP;
P -
where Hy.: = o J(hg )rJ. From relation kAk; P kAk;kAk; and the fact that

kr 23( )ky = kr 23( )ky (r 2Jo( ) is a symmetric matrix), it follows that kr 2Jo( )k
Lo forall 2 RMP | which means thatr Jg is Lo{Lipschitz continuous and consequently
alsor J is Lipschitz continuous with constantL = Lo+ Lg.

Point (ii) of Lemma 2 shows that an estimate of the Lipschitz constarof r Jq, and,
in general,r J can be computed. The estimate derived in (8) is far from being sharput
this will not a ect the behaviour of the algorithms described in the n&t section since,
unlike many existing proximal gradient or forward{backward methds which exploits the
value of the Lipschitz constant ofr Jo, the methods we propose do not need it explicitly.

Point (i) of Lemma 2 makes clear that, if a solution to problem (4) exis, then it
is not unique and it can be determined only up to a real constant. This a common
feature shared with the unregularized problem (3). However, siathe objective function
J is not periodic and, in addition, none of the two termsly and Jg are coercive, we
can not prove the existence of a minimum point of neither by continuity, as can be

(8)
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done for the functionJ, when the wavelengths ratios are rational, nor by coercivity. A
speci ¢ proof of existence of the solution for problem (4) is now psented.

Theorem 1 The objective functionJ admits at least one global minimum point.
Furthermore, if 2 RMP is a global minimizer ofJ, then alsof + cl: ¢ 2 Rg
are global minimizers ofJ.

Proof. Let S=f 2 RMP : = cl; ¢c2 Rg be the line inRMP of all constant images
and be any hyperplane interiectings in one po)i(nt s, I.€.
= f 2R"" : & ,+b=0g; a 60; b2 R: (9)
r2 r2
P
Thanks to part (i) of Lemma 2, forany 2 RMP the point = —Paﬁf"'b 12

r ar

is such thatJ( )= J( ). Consequently, if is a minimum point of J on , then itis
also a minimum point onRMP , becauseJ( ) J( )= J( )forall 2 RMP. Hence
we restrict the search of the minimum point on and we denote with]j the restriction
of J to . Since S=argmin ,grwe Jr( ) and intersects Sonlyin s, Jr iS a convex
function with a uniqgue minimum point on , which implies that Jr is coercive on
(see [23, Proposition 3.2.5, De nition 3.2.6]). Furthermore, from poir(ii) of Lemma 1,
we know that Jgy is a bounded function on . Then Jj is the sum of a coercive term
and a bounded one, therefore it is itself coercive. This allows to cdude that J admits
a minimum point on and thus also on RMP . The second part of the thesis follows
from Lemma 2, part (i).

Note that the above proof of existence holds also for the regulae DIC problem
proposed in [11, 12], in which the rst order Tikhonov regularizer uskinstead of the
TV functional is also noncoercive.

3. Optimization methods

In previous works [9, 11, 12], the problem of DIC phase reconsttiom had been
addressed with a nonlinear conjugate gradient method [24]. Howevas we will see in
Section 4, these methods require in practice several evaluatiofish® objective function
and possibly its gradient in order to compute the linesearch paranmet What we propose
instead is to tackle problem (4) with a gradient descent algorithm in té di erentiable

case (> 0) and a proximal gradient method in the nondi erentiable case (= 0). The

key ingredients of both methods are the use of an Armijo linesearelh each iteration,

which ensures convergence to a stationary point of problem (4)n@a clever adaptive
choice of the steplength in order to improve the speed of convenge.

For sake of simplicity, from now on each monochromatic image is trest as a vector in
RN (being N = MP) obtained by a lexicographic reordering of its pixels.
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3.1. The limited memory steepest descent method

We consider rst the HS regularizer. In this case the objective fution is di eren-
tiable and we exploit the limited memory steepest descent (LMSD) medd proposed
by Fletcher [25] and outlined in Algorithm 1. The LMSD method is a standrd gradient
method equipped with a monotone Armijo linesearch and variable stiemgths approx-
imating the inverse of some eigenvalues of the Hessian matrixJ( (M) in order to
improve the convergence speed. Unlike the classical Barzilai{BoiwgBB) rules [26]
and their generalizations (see e.g. [27, 28, 29]) which try to approxate (r 2J( (M)) !
with a constant diagonal matrix, the idea proposed by Fletcher foquadratic objective
functions is based on a Lanczos iterative process applied to apgrate some eigen-
values of the Hessian matrix of the objective function. Some algebshows that this
can be practically performed without the explicit knowledge of the Hssian itself but
exploiting only a set of back gradients and steplengths (see stedd® of Algorithm 1).
Generalization to nonquadratic functions can be obtained by compag the eigenvalues
of the matrix €n step 10 instead of (we remark that for quadratic J the two matrices
coincide).

Some practical issues have to be addressed in the implementatiorAtforithm 1:
The rst loop (step 1 to 5) builds a matrix
G=rJ( ™My r g ™M™y g (0D

of sizeMP  m. The initial values for the rst m steplengths can be provided by
the user (e.g. by computing the BB ones) or can be chosen with thaense approach

described in steps 6{10 but with smaller matrices. For example, onarc x éo),

computeG = r J( @) and use steps 6{10 to compute . At this point, de ning
G=[rJ( @) rJ( ®)one can compute ¥ and ¥ and repeat the procedure
until a whole set ofm back gradients is available.

The same procedure can be adopted when step 10 provides amf< m positive
eigenvalues. In this case, all columns @ are discarded,G becomes the empty
matrix and the algorithm proceeds withm®instead ofm until a whole set ofm back
gradients is computed. Ifm°= 0, a set of m \safeguard" steplengths, corresponding
to the last set of m positive steplengths values provided by step 10, is exploited for

the next m iterations.

If GTG in step 7 is not positive de nite, then the oldest gradient ofG is discarded
and a new matrix G' G is computed. This step is repeated untiG"'G becomes
positive de nite.

The stopping criterion can be chosen by the user and be related thet decrease
of the objective functionJ or its gradient norm, or to the distance between two
successive iterates.

Concerning the computational costs of LMSD, the heaviest taslks each iteration
are the computation ofr J( ™) at step 1 and J( (™ W J( M) at step 2.
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Algorithm 1 Limited memory steepest descent (LMSD) method

Choose;! 2 (0;1), m 2 Nso, E,O);:::; fﬁ) 1> 0, ©@2RN and setn=0.
While True
Forl=1;:::;m

1. Dene G(:;1)=r J( ™M),
2. Compute the smallest non{negative integer, such that |, = © in satis es

JC™  rJ™y) JCM™ v ke J( MKZ: (10)
3. Compute (™D = (M ¢ g (),
If \Stopping Criterion" is satis ed
4. Return
Else
5. Setn=n+1.
EndIf
EndFor 2 . 3
nm
1
6. Dene the (m+1) m matrix = nme . :
. n 1
1
n 1

7. Compute the Cholesky factorizatiorRTR of the m m matrix GTG.
8. Solve the linear systenRTr = G'r J( M),
9. Denethem mmatrix =[ R;r] R %

10. Compute the eigenvalues;;:::;  of the symmetric and tridiagonal approximation
€of de ned as
€= diag( ) + tril( c D) +tril( ;DT
being diag() and tril( ; 1) the diagonal and the strictly lower triangular parts of
a matrix.
11. De ne f]oﬂi 1=1=,1=1;::0m.
EndWhile

Considering step 1, we focus onJoy. As it is written in (6), due to the product between
e "< and (h .); s I Jo can be performed withO(N 2) complexity; this is how the
gradient is computed in [11]. However, if we take the sum ovgrof the residuals into
the argument of Im(), then we can conveniently rewrite (6) as

x X n : .0
Bd0) - Bim e (e @) M ele D

=1 k=1 >
where h;:  h, denotes the componentwise product between two imagés; h, and
(M. )j = (he, ) ; forallj 2 . Then the heaviest operations in (11) are the two
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convolutions which, thanks to the assumption of periodic boundargonditions, can be
performed with a FFT/IFFT pair ( O(N logN) complexity). Hence, sincer Jr has
O(N) complexity, we can conclude that step 1 has an overall complexity ®(N logN).

Similarly, the function at step 2 is computed with complexityO(N logN), due to the
presence of one convolution inside the triple sum in (2).

From a practical point of view, we have already shown that the LMSDnethod
is an e ective tool for DIC imaging, especially if compared to more stalard gradient
methods equipped with the BB rules [17]. From a mathematical point ofiew, one
can prove, in the same way as in [30], that every limit point of the sequee generated
by Algorithm 1 is a stationary point for problem (4). In addition, the convergence of
Algorithm 1 can be asserted whenever the objective functioh satis es the Kurdyka{
Lojasiewicz (KL) property [31, 32] at each point of its domain. Ma precisely, as shown
in a number of recent papers [33, 34, 35], one can prove the cogegrce of a sequence
f (Mg, to a limit point (if any exists) which is stationary for J if the following three
conditions are satis ed:

(H 1) 9a>0: J( (n+1) ) + ak (n+1) (n)k2 J( (n))
(H 2) 9b>0: kr J( (n+1) )k bk (n+1) (n)k
(H3) J satis es the KL property.

This scheme applies to the LMSD method. First of all, conditionH 3) is satis ed
for the DIC functional de ned in (4). Indeed Jg is an analytic function (Lemma 1, part
(ii)) and Jg is a semialgebraic function, which means that its graph is de ned by anite
sequence of polynomial equations and inequalities (see [36] for ardgon). HenceJ is
the sum of an analytic function and a semialgebraic one and for thisa®on it satis es
the KL property on RN (see [36, p. 1769] and references therein). Conditions (H1){
(H2) follows from step 2 and 3, combined with the fact that J is Lipschitz continuous
(Lemma 2, part (ii)), provided that the sequence of steplengthsﬁo) de ned at step 11
is bounded from above. Therefore we can state the following result

Theorem 2 Let J be de ned as in (4),f (Mg,,n the sequence generated by Algorithm
1and Q max, Where na > 0. If  is a limit point of f (Mg.,y, then is a
stationary point of J and (™ converges to

Proof. We start by proving condition (H1). Step 3 of Algorithm 1 can be rewritten in
the following way:

N J( (n)): (n+1) (n) (12)
from which we have
nkr J( (”>)k2 = ik (n+1) () k2 (13)

n

© max, We obtain

| |
J( (n+1)) J( (n)) ~ Kk (+1) (M2 J( (n)) © g (n+D) (N K2: (14)

n max

By substituting (13) in step 2 and since ,
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Algorithm 2 Inexact linesearch{based algorithm (ILA)
Choose X in ma, 21 2(0;1), 2[0;1], > 0, © 2 RN and setn =0.
While True

n 0
1. Set , =max min 510); max ; min », Where © is chosen as in Algorithm 1.

2. Leth™ h™ and ™ be de ned as in (18){(19). Compute <™ 2 RN such that
h(n)(%n)) h(n)( (n)) h(”)(*(”)); (16)

3. Setd™ = ~m ),
4. Compute the smallest non{negative integer, such that , = ' satis es

J( M + nd(n)) J( (n))+ I nh(n)(~(n)): (17)
5. Compute the new point as ™Y = M+ dM,
If \Stopping Criterion" is satis ed
6. Return
Else
7. Setn = n+1.
EndIf
EndWhile
Then (H1) holds with a = = 5. Regarding condition {H2), we can rewrite again
step 3 as:
rJ( (n)): i( (n) (n+l)): (15)
n

Recall that the Lipschitz continuity of r J implies that there is i, > 0 such that the
linesearch parameter , min (See [14, Proposition 4.2] for a proof). Then

ke 3C @)k ke I( V) 130 M)k kr I( M)k
Lk D ey Lo oy

n

L+ 2 g o

min
This concludes the proof of 12) with b= L + 1= ;. The thesis follows from [33,
Theorem 2.9].

3.2. Inexact linesearch{based algorithm

We now turn to the algorithm we used to address the nonsmooth TWihctional. In
particular, we considered a simpli ed version of a recently proposgmoximal gradient
method called VMILA (variable metric inexact linesearch algorithm) [1} In its general
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form, this method exploits a variable metric in the (possibly inexact) amputation of
the proximal point at each iteration and a backtracking loop to satity an Armijo{like
inequality. E ective variable metrics can be designed for speci ¢ okgtive functions by
exploiting suitable decompositions of the gradient of the smooth paof the objective
function itself [30, 37, 38, 39]. However, since in the DIC problem thgradient of Jg
does not lead to a natural decomposition in the required form, in ouests we used the
standard Euclidean distance (we will denote with ILA this simpli ed vesion of VMILA).

The main steps of ILA are detailed in Algorithm 2. At each iterationn, given the
point (M 2 RN and the parameters , > 0, 2 [0;1], we de ne the function

W)= 130 MTC My o=k O+ dr() e ): (18)
n
We observe thath™ is strongly convex for any 2 (0;1]. By setting h™ = h!™ and
zMW = My Jo( ™M), we de ne the unique proximal point
M= prox ;. (zM) = arg min h(M(): (19)

In step 2 of Algorithm 2, an approximation <" of the proximal point (™ is de ned by
means of condition (16). Such a point can be practically computed bgmarking that

Jr can be written as |

_ oD ) _ X g 1. 5 RN
JR()=9(D ) 9= R :
i=1 2
Then considering the dual problem of (19)
max M (v); (20)
Vv2R2N

the dual function (™ has the following form
k ,DTv z(MK2
2 q
whereg is the convex conjugate ofj, namely the indicator function of the set B3 N ,
being BS; R? the 2{dimensional Euclidean ball centered in 0 with radius .
Condition (16) is ful lled by any point ™ = z(W ATy with v 2 RN satisfying [14]
h™ (=) M (v); =1=(1+ ): (22)
Such a point can be found by applying an iterative method to problen2(Q) and using
(22) as stopping criterion.

kz(Mk?2

n

™(v) = g(v) Jr( ™) Sk Jo( MK+ (21)

Similarly to LMSD, any limit point of the sequence generated by ILA is sttionary
for problem (4) [14, Theorem 4.1] and, under the assumption that lamit point exists,
the convergence of ILA to such a point holds whed satis es the Kurdyka{Lojasiewicz
property, the gradient of the smooth partr Jg is Lipschitz continuous and the proximal
point <" is computed exactly [35]. Whether and when ILA converges if the pamal
point is computed inexactly is still an open problem, therefore all weao say for
Algorithm 2 applied to the DIC problem is that all its limit points are stationary.
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4. Numerical experiments

In this section we test the e ectiveness of the algorithms previolysdescribed in some
synthetic problems. All the numerical results have been obtainesh@ PC equipped with

an INTEL Core i7 processor 2.60GHz with 8GB of RAM running Matlab R@13a with

its standard settings. For each test we will report the number otihction evaluations, the
number of gradient evaluations and the computational time needday each algorithm

to provide the reconstructed phase. With this information the reder should be able to
estimate the complexity of the di erent approaches independentlpf the environment

in which the algorithms are implemented and run. The LMSD and ILA rotines for the

DIC problem together with an illustrative example can be downloadedtdhe webpage
http://www.oasis.unimore.it/site/home/software.html.

4.1. Comparison with state{of{the{art methods

Since in the DIC problem the evaluation of the gradient J is computational demand-
ing and its nonlinearity w.r.t.  requires a new computation for each step of the back-
tracking loop, in [9, 11] a heuristic version of a nonlinear conjugateaglient (CG) is
used exploiting a gradient{free linesearch based on a polynomial appimation method.
Although this formulation has practical advantages, the resultingcheme is not guaran-
teed to converge, and in our tests we experienced very di erenebaviours w.r.t. to the
choice of some initial parameters of the linesearch procedure. Fhbis reason, we also
implemented several standard CG methods [24, 40], namely the Fle¢c{Reeves (FR),
Polak{Ribere (PR), PR with nonnegative values (PR") and PR constrained by the FR
values (FR{PR) strategies [41]. For these algorithms, the global nwergence is ensured
by computing the steplength parameter by means of the strong We conditions [24, 41].

The evaluations of the optimization methods have been carried ouhdwo phantom
objects (see Figure 3), which have been computed by using therfmia for the phase
di erence between two waves travelling through two di erent media

s=2 (N1 Nt (23)

wheren; and n, are the refractive indices of the object structure and the surtmding
medium, respectively, andts is the thickness of the object at pixels 2 . The rst
phantom, denominated \cone" and reported at the top row of Figte 3, is a 64 64
phase function representing a truncated cone of radius= 3:2 m with n; = 1:33,
n, =1 and maximum value .x = 1:57 rad attained at the cone vertex. The \cross"
phantom, shown at the bottom row of Figure 3, is another 64 64 phase function of
two crossing bars, each one of width 5m, measuring 0114 rad inside the bars and 0
in the background. For both simulations, the DIC microscope paraeters were set as
follows:

shear: 2 x=0:6 m;
bias: 2 = =2rad;
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Figure 3. Data and results for the cone (top row) and cross (bottom row) djects.
From left to right: true object, noisy DIC color image taken at shear angle ; rad and
corrupted with white Gaussian noise at SNR = 4.5 dB, and reconstruted phase with
the LMSD method from observations at shear angles equal to =4 rad and =4 rad.

numerical aperture of the objective: NA = 09.

For each phantom, a dataset consisting &€ = 2 polychromatic DIC images acquired at
shear angles; = =4radand , = =4rad was created, as in model (1), by convolving
the true phase function with the accordingly rotated DIC PSFs andhen by corrupting
the result with white Gaussian noise at di erent values of the signalfg{noise ratio

SNR =10log,, — (24)

where is the mean value of the true object and is the standard deviation of noise.
The SNR values chosen in the simulations were 9 dB andb4lB.

As far as the regularization parameter and the threshold in (5) are concerned,
these have been manually chosen from a xed range in order to obtaa visually
satisfactory reconstruction. Note that the parameters wererst set in the di erentiable
case (> 0) for the LMSD and the nonlinear CG methods and then the same vauof
the parameter was used also in the nondi erentiable case (= 0) for the ILA method.
The values reported below have been used for each simulation présd in this section.
The resulting values have been =10 2; =10 ?fortheconeand =4 102, =10 3
for the cross.
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Some details regarding the choice of the parameters involved in thptionization
methods of Section 3 are now provided. The linesearch parameterd of the LMSD
and ILA methods have been respectively set ta®) 10 4. These are the standard choices
for the Armijo parameters, however it is known that the linesearclalgorithm is not so
sensible to modi cations of these values [30, 42]. The parameterin the Armijo{like
rule (17) has been xed equal to 1, which corresponds to the mildeshoice in terms
of decrease of the objective functiod. The parameterm in Algorithm 1 is typically
a small value (n = 3;4;5), in order to avoid a signi cant computational cost in the
calculation of the steplengths ©- here we letm = 4. The same choice fom is done
in Algorithm 2, where the values © are constrained in the interval [ min; max] With

mn = 10 % and na = 102. The dual problem (20) is addressed, at each iteration
of ILA, by means of algorithm FISTA [43] which is stopped by using crérion (22)
with =10 ®. This value represents a good balance between convergence c@ael
computational time per iteration [14]. Concerning the nonlinear CG nikods equipped
with the strong Wolfe conditions, we use the same parameters asngoin [41] and we
initialize the related backtracking procedure as suggested in [24, $9]. Regarding the
CG methods endowed with the polynomial approximation, a restartfahe method is
performed by taking a steepest descent step, whenever thersbadirection fails to be a
descent direction. Finally, the constant phase object® = 0 is chosen as initial guess
for all methods.

In order to evaluate the performance of the phase reconstrimt methods proposed
in Section 3, we will make use of the following error distance
k (M clk k™M clk
E (n); = mi =
( )= min kK k K K

P (™ )
N

(25)

where is the phase to be reconstructed and = . Unlike the usual root

j2
mean squared error, which is recovered by setting= 0 in (25), the error distance
de ned in (25) is invariant with respect to phase shifts, i.e.

E( +cl; )=E(: ); 8 2RV;8c2R: (26)

That makes the choice of (25) well{suited for problem (4), whose Istion might be
recovered only up to a real constant.

The methods have been run for the cone and cross phantoms witetparameters
setting previously outlined. Since in the unconstrained di erentiablease the goal is to
vanish of the gradient ofJ, the iterations of the LMSD and the CG methods have been
arrested when the following stopping criterion based on the decssaof the gradient
norm

kr 3( M)k (27)

was met with =4 10 2 for the cone and =10 2 for the cross. On the other hand,
since with the TV functional the gradient is not available, the ILA metod has been
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10

Error versus computational time plots for the cone (top row) and cross
(bottom row) objects. From left to right: noise{free data, SNR = 9 dB and SNR =
4.5 dB.

stopped when the error up{to{a{constant between two successe iterates was lower

than a prexed > 0, thatis

(n+1)

(n)

where (n+1)

tolerance

k (DK

(M) is the mean value of the di erence between the two objects. The
in (28) was set equal to 510 ° for the cone and 10* for the cross. We

(28)

remark that these values, as the ones suggested before for sih@pping criterion (27),
have been tuned in order to obtain sensible reconstructions withrers close to the op-

timal ones.

In Figure 4 we show the reconstruction error provided by the di e#nt methods
as a function of the computational time. Among the CG methods, weeport only
the results obtained by the PR algorithm combined with a polynomial{aproximation{
based linesearch (PR{PA) and the FR{PR one in which the linesearchgpameter is
computed with the SW conditions (FR{PR{SW), since they always ouyperformed the
other possible choices. From the plots of Figure 4, it can be drawnaheach method
is quite stable with respect to the noise level on the DIC images. Howveg, in terms
of time e ciency, LMSD outperforms the CG methods in both tests,showing a time
reduction of at least 50% to satisfy the stopping criterion. We repbsome further details
in Tables 1 and 2 on the computational cost of the di erent methods Of course the
numerical values in the tables depend on the tolerances chosentfar stopping criteria,
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SNR (dB) Algorithm Iterations #f #g Time (s) Objfun Error

PR{PA 37 465 37 2.55 0.89 1.74 %

1 FR{PR{SW 38 157 157 2.44 0.89 2.09 %
LMSD 29 35 29 0.55 0.89 1.64 %

ILA 66 119 66 1.77 0.52 1.76 %

PR{PA 31 389 31 2.12 1.65 1.81 %

9 FR{PR{SW 37 142 142 2.24 165 219%
LMSD 29 35 29 0.55 1.65 1.69 %

ILA 60 91 60 1.56 1.29 1.91 %

PR{PA 41 514 41 2.79 6.88 2.57 %

45 FR{PR{SW 34 115 115 1.81 6.88 2.54 %
' LMSD 29 35 29 0.54 6.88 2.22%
ILA 61 104 61 1.56 6.80 2.50 %

Table 1. Cone tests. From left to right: number of iterations required to meet
the stopping criteria, number of function and gradient evaluations, execution time,
objective function value and error achieved at the last iteration.

but some general considerations can be drawn, e.g., on the numbéevaluations ofJ
andr J (r Jo for ILA). For instance, in the case of the cone (Table 1), LMSD eVaates
the function less than 2 times per iteration. By contrast, the badkacking procedure
exploited in the FR{PR{SW method requires an average of 4 evaluatis per iteration of
both the function and gradient to satisfy the strong Wolfe conditios, whereas the PR{
PA method, despite evaluating the gradient only once, need on aege 12 evaluations
of the function before detecting the correct three{points{inteval (see [11]). One could
reduce the number of evaluations in PR{PA by properly tuning the inital parameters
of the linesearch. However, as mentioned before, this method isitgusensitive to this
choice, and little variations might result in a great increase of the nuber of restarts and,
eventually, in the divergence of the algorithm. In addition, it seemshiat the optimal
value of these parameters strictly depends on the object to becomstructed.

4.2. Comparison between LMSD and ILA

We now compare the performance of LMSD and ILA. On one hand, ALreconstructs the
cross object slightly better than LMSD. Indeed, ILA provides thdowest reconstruction
error in Table 2 for each SNR value and the corresponding phaseiesttes have better
preserved edges, as clearly depicted in Figure 5, where we consttierfollowing \up{

to{a{constant” residual

Rj = j ; 8] 2 (29)
to measure the quality of the reconstructions provided by the twmnethods. This result
was expected, since ILA addresses problem (4) with the standaf functional ( =0

in (5)), which is more suited than HS regularization (> 0) when the object to be
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SNR (dB) Algorithm Iterations #f #g Time (s) Objfun Error

PR{PA 138 1373 138 6.73 1.01 1.98 %

1 FR{PR{SW 109 423 423 6.14 1.01 1.98 %
LMSD 168 231 168 3.09 1.01 2.00 %

ILA 100 176 100 7.18 0.87 1.66 %

PR{PA 121 1209 121 5.97 1.96 2.26 %

9 FR{PR{SW 106 323 323 4.69 1.96 2.25%
LMSD 140 190 140 2.52 1.96 2.27 %

ILA 57 106 57 2.60 1.82 1.94 %

PR{PA 98 997 98 4.97 8.57 3.63 %

45 FR{PR{SW 96 300 300 4.41 8.57 3.63 %
' LMSD 152 221 152 2.75 8.57 3.64 %
ILA 97 179 97 5.26 8.47 3.46 %

Table 2. Cross tests. From left to right: number of iterations required to meet
the stopping criteria, number of function and gradient evaluations, execution time,
objective function value and error achieved at the last iteration.

reconstructed is piecewise constant. On the other hand, ILA mdye computationally
more expensive since, unlike LMSD, it requires to iteratively solve thaner subprob-
lem (20) at each outer iteration. Indeed, looking at Table 2 we noticthat, although
the number of function evaluations per iteration in LMSD and ILA is qite similar (on
average around ¥ for LMSD and 1.8 for ILA) and the ILA iterations are stopped way
before the LMSD ones, the computational time in ILA is always higherFor instance,
in the case SNR = 9 dB, the methods require approximately the samarte, although
the number of iterations of ILA is more than halved. This fact is explaed if we look
at the average number of inner iterations required by ILA to compe the approximate
proximal point: 21:3, 1011 and 1343 for SNR =1 ;9;4:5 dB respectively. Analogous
conclusions on the costs per iteration can be drawn by consideringetresults on the
cone object (see Table 1). In this case, LMSD is able to achieve a loweconstruction
error w.r.t. ILA in very few iterations, providing a remarkable gain in he computational
time needed.

In order to deepen the analysis between the di erentiable TV appramation and
the original nondi erentiable one, we compared the LMSD and ILA m#éods in one
further realistic simulation. In particular, we considered the \grid" object in Figure 6,
which is a 1388 1040 image emulating the phase function of a multi{area calibration
artifact [44], which measures 212 rad inside the black regions and:287 rad inside the
white ones. The setup of the two methods is identical to that of thprevious tests (with
the exception of the numerical aperture of the objective NA whichas been set equal
to 0.8), and the parameters (for both models) and (for the smooth TV functional)
have been set equal to 210 ! and 10 %, respectively. Instead of three levels of noise,





















