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Abstract. In this paper we address the problem of estimating the phase from color
images acquired with di�erential{interference{contrast microscopy. In particular, we
consider the nonlinear and nonconvex optimization problem obtainedby regularizing
a least{squares{like discrepancy term with an edge{preserving functional, given by
either the hypersurface potential or the total variation one. We investigate the
analytical properties of the resulting objective functions, proving the existence of
minimum points, and we propose e�ective optimization tools able to obtain in both the
smooth and the nonsmooth case accurate reconstructions with areduced computational
demand.
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1. Introduction

Since their invention, microscopes have been a powerful tool in a variety of disciplines
such as biology, medicine and the study of materials. In particular, the branch of optical
microscopy (also referred as light microscopy) has been successfully applied in biomed-
ical sciences and cell biology in order to study detailed structures and understand their
function in biological specimens. The optical microscope uses visible light for illuminat-
ing the object and contains lenses that magnify the image of the object and focus the
light on the retina of the observer's eye [1]. Optical microscopy includes several tech-
niques, such as bright{�eld, dark{�eld, phase contrast, di�erential interference contrast
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(DIC), uorescence and confocal microscopy. We refer to the work of Wilson and Bacic
[2] for a comparison of the advantages and limitations of these techniques.

The technique of interest in this paper is DIC microscopy, designed by Allen, David
and Nomarski [3] to overcome the inability to image unstained transparent biological
specimens, which is typical of bright{�eld microscopes, while avoidingat the same time
the halo artifacts of other techniques designed for the same purpose, such as phase con-
trast. DIC microscopes are able to provide contrast to images by exploiting the phase
shifts in light induced by the transparent specimens (also called phase objects) while
passing through them. This phenomenon is not detected by the human eye, neither
by an automatic visual system, and occurs because of the interaction of light with dif-
ferent refractive indexes of both the specimen and its surrounding medium. In DIC
microscopy, such phase shifts are converted into arti�cial black and white shadows in
the image, which correspond to changes in the spatial gradient of the specimen's optical
path length. Furthermore, this technique has been widely recognized by its possibility
to use full numerical apertures in the objective, which results in high contrast images
at high lateral resolution.

One disadvantage of DIC microscopy is that the observed images cannot be easily
used for topographical and morphological interpretation, because the changes in phase
of the light are hidden in the intensity image. It is then of vital importance to recover
the specimen's phase function from the observed DIC images. The problem of phase
estimation in optical imaging has been widely studied, as shown in the review made in
[4]. Previous work for reconstructing the DIC phase function has been done by Munster
et al [5], who retrieve the phase information by deconvolution with a Wiener �lter; line
integration of DIC images is proposed by Kam in [6], supposing that theline integra-
tion along the shear angle yields a positive de�nite image, which is not always the case
since the intensity image is a nonlinear relation between the transmission function of
the specimen and the point spread function of the microscope. Kouet al [7] introduced
the use of transport of intensity equation to retrieve the phase function; Bostan et al
[8] also used this approach, including a total variation regularizationterm to preserve
the phase transitions. Finally, in the work of Preza [9, 10, 11, 12], the phase estimation
in DIC microscopy has been addressed by considering the minimizationof a Tikhonov
regularized discrepancy term, which is performed by means of a modi�ed nonlinear con-
jugate gradient (CG) method.

In this work, we are interested in reconstructing the phase by minimization of a
penalized least{squares (LS) term as proposed in [11], suitably generalized in order to
extend the one color acquisition to polychromatic ones. Instead ofa �rst order Tikhonov
regularization, which tends to recover oversmoothed images, we consider two di�erent
penalties, the �rst one being the total variation (TV) functional which is suitable for
piecewise constant images, while the second is the hypersurface (HS) potential [13],
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which is a smooth generalization of the TV able to reconstruct both sharp and smooth
variations of the unknown phase. Since the latter choice leads to the minimization of
a smooth functional, we consider a limited memory gradient method, inwhich suitable
adaptive steplength parameters are chosen to improve the convergence rate of the al-
gorithm. As concerns the TV{based model, we address the minimization problem by
means of a recently proposed linesearch{based forward{backward method able to handle
the nonsmoothness of the TV functional [14].

We performed di�erent numerical tests on synthetic realistic images and we com-
pared the proposed methods with both the original CG method proposed in [11], ex-
ploiting a gradient{free linesearch for the computation of the steplength parameter, and
standard CG approaches. The results we obtained show that the performance of the
limited memory gradient method in minimizing the LS+HS functional is much better
than those of the CG approaches in terms of number of function/gradient evaluations
and, therefore, computational time. Moreover, despite the di�culties due to the pres-
ence of a nondi�erentiable term, also the linesearch{based forward{backward method
proposed in the case of the TV functional is able to provide reconstructed images with
a computational cost comparable to that of the gradient methods, thus leaving to a
potential user freedom to choose the desired regularizer withoutlosing in e�ciency.

The organization of the paper is as follows. In Section 2, the DIC system for
transmitted coherent light is described, together with the corresponding polychromatic
image formation model. Furthermore the nonlinear inverse problem of the phase
reconstruction and its corresponding optimization problem are presented, proving some
analytical properties of the objective function, such as the existence of minimum
points. In Section 3 the iterative optimization algorithms designed toaddress the phase
reconstruction problem are detailed. In Section 4 numerical simulations on synthetic
images are presented in order to evaluate e�ciency and robustness of the considered
approaches. Conclusions and perspectives are included in Section 5.

2. Model and problem formulation

2.1. The DIC system

DIC microscopy works under the principle of dual beam interference of polarized light,
as depicted in Figure 1. Coherent light coming from a source is passedthrough a polar-
izer lens. Every incident ray of polarized light is splitted by a Nomarskiprism placed
at the front focal plane of the condenser. This splitting producestwo wave components
{ ordinary and extraordinary { such that their corresponding electromagnetic �elds are
orthogonal and separated at a �xed shear distance 2�x along a speci�c shear direction,
whose angle� k formed with the x{axis is denominated shear angle. The specimen is
sampled by the pair of waves; if they pass through a region where there is a gradient
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in the refractive index, the waves will be di�erentially shifted in phase. After this, they
will reach a second Normarski prism placed at the back focal plane of the objective
lens. This prism introduces an additional phase shift, called the bias retardation and
indicated with 2� � , which helps to improve the contrast of the observed image and to
give the shadow{cast e�ect characteristic of DIC images (see Figure 2). The interference
of the two sheared and phase shifted waves occurs inside this prismand, thus, the two
waves are recombined into a single beam that goes through a secondpolarizer lens called
the analyzer. Further details on the DIC working principle can be found in the work of
Murphy [15] and Mehta et al [16].

Figure 1. Transmitted light Nomarski DIC microscope. The di�erence of colors of
the ordinary and extraordinary waves indicates that their electromagnetic �elds are
orthogonal to each other.

The observed images will have a uniform gray background on regionswhere there
are no changes in the optical path, whereas they will have dark shadows and bright
highlights where there are phase gradients in the direction of shear, having a 3D relief{
like appearance (see Figure 2). It is important to note that the shadows and highlights
indicate the signs and slope of phase gradients in the specimen, and not necessarily
indicate high or low spots [3].

In this paper we consider the polychromatic rotational diversity model [17], which
is an extension of the model presented in [11] to color image acquisition. In this model
K RGB color images are acquired by rotating the specimenK times with respect to
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(a) (b) (c) (d)

Figure 2. Phase functions of two phantom specimens and corresponding noiseless
DIC color images: (a) phase function of the \cone" object, (b) DIC image of the cone,
(c) phase function of the \cross" object, (d) DIC image of the cross. The images have
been computed by using model (1) and setting the shear to 2�x = 0 :6 � m, the bias to
2� � = �= 2 rad and the shear angle to� = �= 4 rad.

the shear axis, which results inK rotations of the amplitude point spread function.
Typically K equals 2 and the di�erence between the two angles is�= 2. Actually, for a
given shear angle� k , the acquired imagek is related to the directional derivative of the
object along the direction� k [10]. Then the 2D image can be reconstructed from two
orthogonal directional derivatives [11]. In this con�guration, therelation between the
acquired images and the unknown true phase� is given by

(ok;� ` ) j = a1

�
�(hk;� ` 
 e� i�=� ` ) j

�
�2

+ ( � k;� ` ) j ; (1)

for k = 1; : : : ; K; ` = 1; 2; 3; j 2 � , where

� k is the index of the angles� k that the shear direction makes with the horizontal
axis [11], ` is the index denoting one of the three RGB channels andj = ( j 1; j 2)
is a 2D index varying in the set� = f 1; : : : ; M g � f 1; : : : ; Pg, M and P meaning
the size of the acquired image, which is determined by the resolution of the CCD
detector of the microscope, with typical value of 1388� 1040 pixels;

� � ` is the `{th illumination wavelength. The object is illuminated with white light,
whose wavelengths range from 400 nm to 700 nm. The digital acquisition system
of the microscope comprises a color bandpass optical �lter which isolates the RGB
wavelengths, acquired separately by the CCD detector [15]. Since itis selected a
narrow band for each color, we use the mean wavelength� ` at each band.

� ok;� ` 2 RMP is the ` th color component of thekth discrete observed image
ok = ( ok;� 1 ; ok;� 2 ; ok;� 3 ) 2 RMP � 3;

� � 2 RMP is the unknown phase vector ande� i�=� ` 2 CMP stands for the vector
de�ned by (e� i�=� ` ) j = e� i� j =� ` ;

� hk;� ` 2 CMP is the discretization of the continuous DIC point spread function
[10, 18] corresponding to the illumination wavelength� ` and rotated by the angle
� k , i.e.,

hk;� ` (x; y) =
1
2

�
e� i � � p� `

�
Rk � (x � � x; y)T

�
� ei � � p� `

�
Rk � (x + � x; y)T

��
;
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where p� ` (x; y) is the coherent PSF of the microscope's objective lens for the
wavelength� ` , which is given by the inverse Fourier transform of the disk support
function of amplitude 1 and radius equal to the cuto� frequencyf c = NA=� ` [10],
being NA the numerical aperture of the objective lens, andRk is the rotation
matrix which rotates the coordinates according to the shear angle� k ;

� h1 
 h2 denotes the 2D convolution between the twoM � P imagesh1; h2, extended
with periodic boundary conditions;

� � k;� ` 2 RMP is the noise corrupting the data, which is a realization of a Gaussian
random vector with mean0 2 RMP and covariance matrix� 2I (MP )2 , where I (MP )2

is the identity matrix of size (MP )2;

� a1 2 R is a constant which corresponds to closing the condenser aperture down to
a single point.

2.2. Least{squares data �delity

The phase reconstruction problem consists in �nding an approximation of the unknown
phase vector� from the observed RGB imageso1; : : : ; oK . Let us �rst address this
problem by means of the maximum likelihood (ML) approach. Since the 3K images
ok;� ` are corrupted by Gaussian noise, then the negative log likelihood of each image is a
least{squares measure, which is nonlinear due to the presence of the exponential and the
squared modulus in (1). In the case of white Gaussian noise, statistically independent
of the data, the negative log likelihood of the problem is the sum of thenegative log
likelihoods of the di�erent images, namely the following �t{to{data term

J0(� ) =
3X

`=1

KX

k=1

X

j 2 �

h
(ok;� ` ) j � a1

�
�(hk;� ` 
 e� i�=� ` ) j

�
�2

i 2
: (2)

Then the ML approach to the phase reconstruction inverse problem consists in the
minimization of the function in (2):

min
� 2 RMP

J0(� ): (3)

In the next result, we collect some properties ofJ0 that will be useful hereafter.

Lemma 1 Let J0 : RMP ! R be de�ned as in (2). The following properties hold true:

(i) J0(� + c1) = J0(� ), 8 c 2 R, where1 2 RMP is the vector of all ones.

(ii) J0 is bounded.

(iii) J0 is an analytic function on RMP and thereforeJ0 2 C1 (RMP ).

(iv) Suppose that � `
� ` 0

is rational for all `; ` 0 2 f 1; 2; 3g. Then there existsT > 0 such
that J0 is periodic of period T with respect to each variable, i.e. for anyj 2 � ,
de�ning ej = ( � j;r )r 2 � = (0 ; : : : ; 0; 1; 0; : : : ; 0) 2 RMP , where � j;r is the Kronecker
delta, it holds

J0(� + Tej ) = J0(� ); 8 � 2 RMP :
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Proof. (i) Set J`;k;j (� ) =
�
�(hk;� ` 
 e� i�=� ` ) j

�
�2

=

�
�
�
�
P

r 2 �
(hk;� ` )r e� i (� j � r )=� `

�
�
�
�

2

. If the thesis

holds for J`;k;j , then it holds also forJ0. We have

J`;k;j (� + c1) =

�
�
�
�
�

X

r 2 �

(hk;� ` )r e� i (� j � r + c)=� `

�
�
�
�
�

2

=
�
�e� ic=� `

�
�2

�
�
�
�
�

X

r 2 �

(hk;� ` )r e� i (� j � r )=� `

�
�
�
�
�

2

= J`;k;j (� ):

(ii) By applying the triangular inequality and the fact that je� i� j =� ` j = 1, j 2 � , we
have

jJ0(� )j �
3X

`=1

KX

k=1

X

j 2 �

2

4j(ok;� ` ) j j + a1

 
X

r 2 �

j(hk;� ` )r j
�
�e� i (� j � r )=� `

�
�

! 2
3

5

2

=
3X

`=1

KX

k=1

X

j 2 �

2

4j(ok;� ` ) j j + a1

 
X

r 2 �

j(hk;� ` )r j

! 2
3

5

2

:

(iii) If J`;k;j is an analytic function onRMP , then J0 is given by sums and compositions of
analytic functions and thus it is itself analytic [19, Propositions 1.6.2 and 1.6.7]. Hence
we focus onJ`;k;j . Since (hk;� ` )r 2 C, it can be expressed in its trigonometric form
(hk;� ` )r = � r ei� r , with � r 2 R� 0, � r 2 [0; 2� ). Then we can rewriteJ`;k;j as follows

J`;k;j (� ) =

 
X

r 2 �

� r cos(� r � (� j � r =� ` ))

! 2

+

 
X

r 2 �

� r sin(� r � (� j � r =� ` ))

! 2

and the thesis follows from the analyticity of the functions sin(�), cos(�) and (�)2.
(iv) It is easy to see thatJ0 is the sum of three periodic functions of variable� j whose
periods are 2�� 1, 2�� 2 and 2�� 3, respectively. By recalling that the sum of two periodic
functions is periodic if the ratio of the periods is a rational number, we can conclude
that J0 is periodic. �

2.3. Introducing regularization

When the assumption of rationality on the wavelengths ratios holds,using points (iii)
and (iv) of Lemma 1, it is easy to see that the solution to problem (3) exists. However,
points (i) and (iv) imply that the solution is not unique and may be determined only
up to an unknown real constant or to multiples of the periodT w.r.t. any variable � j .
Furthermore, J0 is a nonconvex function of the phase� , thus it may admit several local
minima as well as saddle points. In the light of these considerations, we can conclude
that (3) is a severely ill{posed problem, which requires regularizationin order to impose
some a priori knowledge on the unknown phase. In particular, we propose to solve the
following regularized optimization problem

min
� 2 RMP

J (� ) � J0(� ) + JR (� ); (4)
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where J0 is the least{squares (LS) distance de�ned in (2) andJR is a regularization
functional. In particular, we consider hypersurface (HS) potential de�ned as [20, 21]

JR(� ) = �
X

j 2 �

q
((D� ) j )2

1 + (( D� ) j )2
2 + � 2; (5)

where � > 0 is a regularization parameter, the discrete gradient operatorD : RMP �!
R2MP is set through the standard �nite di�erence with periodic boundaryconditions

(D� ) j 1;j 2 =

 
((D� ) j 1;j 2 )1

((D� ) j 1;j 2 )2

!

=

 
� j 1+1 ;j 2 � � j 1 ;j 2

� j 1 ;j 2+1 � � j 1 ;j 2

!

; � M +1 ;j 2 = � 1;j 2 ; � j 1 ;P +1 = � j 1;1

and the additional parameter� � 0 plays the role of a threshold for the gradient of the
phase. The choice of this kind of regularization term instead of the �rst order Tikhonov
one used e.g. in [11, 12] lies in the capability of the HS regularizer to behave both as a
Tikhonov{like regularization in regions where the gradient assumes small values (w.r.t.
� ), and as an edge{preserving regularizer in regions where the gradient is very large, as
it happens in the neighborhood of jumps in the values of the phase. Moreover, we will
also consider the case in which the regularization term is given by the standard total
variation (TV) functional [22], which is de�ned exactly as in (5) by setting � = 0. We
remark that, even if the HS term can be seen as a smoothed versionof the TV one, their
e�ect is quite di�erent on the recovered images since, e.g., reconstructions provided by
HS can be free of cartoon e�ects, typical of TV regularization. Furthermore, one should
be careful to adopt appropriate minimization algorithms in both cases, since the use of
a method designed for smooth optimization to minimize the LS + HS functional with
a very small � typically leads to severe numerical instability problems.

Problem (4) is still a di�cult nonconvex optimization problem and, when � = 0, it
is also nondi�erentiable. Some properties of the objective functionJ are now reported.

Lemma 2 Let J : RMP ! R be de�ned as in (4). Then:

(i) J (� + c1) = J (� ), 8 c 2 R.

(ii) If � > 0, then J 2 C1 (RMP ) and r J is Lipschitz continuous, namely there exists
L > 0 such that

kr J (� ) � r J ( )k2 � Lk� �  k2; 8�;  2 RMP :

Proof. (i) It follows from the relation ( D(� + c1)) j 1 ;j 2 = ( D� ) j 1;j 2 .
(ii) Point (iii) of Lemma 1 states that J0 2 C1 (RMP ) and the same property holds
for JR when � > 0, henceJ is the sum of twoC1 (RMP ) functions. It is known that
r JR is LR {Lipschitz continuous with LR = 8�=� 2. We prove that alsor J0 is Lipschitz

continuous. If we introduce the residual imager k;� ` =
�
�
�(hk;� ` 
 e� i�=� ` )

�
�
�
2

� ok;� ` and �x

s 2 � , the partial derivative of J0 and the entries of the Hessian matrixr 2J0 are given
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by

@J0(� )
@�s

=
3X

`=1

KX

k=1

X

j 2 �

4
� `

(r k;� ` ) j Im
n

e� i� s =� ` (hk;� ` ) j � s(hk;� ` 
 e� i�=� ` ) j

o
; (6)

@2J0(� )
@�t@�s

= 4
3X

`=1

KX

k=1

X

j 2 �

2
� 2

`

Imf #sgImf #tg +

(r k;� ` ) j

� 2
`

Re
n

ei (� t � � s )=� ` (hk;� ` ) j � s(hk;� ` ) j � t � � s;t#s

o
; (7)

where #p = e� i� p =� ` (hk;� ` ) j � p(hk;� ` 
 e� i�=� ` ) j (p 2 � )and Re(�); Im( �) denote the real
and imaginary parts of a complex number. Sincej#pj � j (hk;� ` ) j � pj

P
r 2 � j(hk;� ` )r j, we

have
�
�
�
�
@2J0(� )
@�t@�s

�
�
�
� � 4

3X

`=1

KX

k=1

X

j 2 �

2
� 2

`

j(hk;� ` ) j � sjj (hk;� ` ) j � t j

 
X

r 2 �

j(hk;� ` )r j

! 2

+

j(r k;� ` ) j j
� 2

`

(

j(hk;� ` ) j � sjj (hk;� ` ) j � t j + j(hk;� ` ) j � sj
X

r 2 �

j(hk;� ` )r j

)

:

and therefore

kr 2J0(� )k1 = max
t2 �

X

s2 �

�
�
�
�
@2J0(� )
@�t@�s

�
�
�
�

� 4
3X

`=1

KX

k=1

X

j 2 �

Hk;`

� 2
`

�
2 max

t2 �
j(hk;� ` ) j � t jH 2

k;` +
�
H 2

k;` + j(ok;� ` ) j j
�

�
max
t2 �

j(hk;� ` ) j � t j + Hk;`

��

= L0; 8 � 2 RMP ; (8)

where Hk;` =
P

r 2 � j(hk;� ` )r j. From relation kAk2 �
p

kAk1kAk1 and the fact that
kr 2J (� )k1 = kr 2J (� )k1 (r 2J0(� ) is a symmetric matrix), it follows that kr 2J0(� )k2 �
L0 for all � 2 RMP , which means thatr J0 is L0{Lipschitz continuous and consequently
also r J is Lipschitz continuous with constantL = L0 + LR . �

Point (ii) of Lemma 2 shows that an estimate of the Lipschitz constant of r J0 and,
in general,r J can be computed. The estimate derived in (8) is far from being sharp, but
this will not a�ect the behaviour of the algorithms described in the next section since,
unlike many existing proximal gradient or forward{backward methods which exploits the
value of the Lipschitz constant ofr J0, the methods we propose do not need it explicitly.

Point (i) of Lemma 2 makes clear that, if a solution to problem (4) exists, then it
is not unique and it can be determined only up to a real constant. Thisis a common
feature shared with the unregularized problem (3). However, since the objective function
J is not periodic and, in addition, none of the two termsJ0 and JR are coercive, we
can not prove the existence of a minimum point ofJ neither by continuity, as can be
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done for the functionJ0 when the wavelengths ratios are rational, nor by coercivity. A
speci�c proof of existence of the solution for problem (4) is now presented.

Theorem 1 The objective function J admits at least one global minimum point.
Furthermore, if  2 RMP is a global minimizer ofJ , then also f  + c1 : c 2 Rg
are global minimizers ofJ .

Proof. Let S = f � 2 RMP : � = c1; c 2 Rg be the line in RMP of all constant images
and � be any hyperplane intersectingS in one point � S, i.e.

� = f � 2 RMP :
X

r 2 �

ar � r + b= 0g;
X

r 2 �

ar 6= 0; b2 R: (9)

Thanks to part (i) of Lemma 2, for any� 2 RMP the point � � = � �
� P

r ar � r + bP
r ar

�
1 2 �

is such that J (� � ) = J (� ). Consequently, if is a minimum point of J on �, then it is
also a minimum point onRMP , becauseJ ( ) � J (� � ) = J (� ) for all � 2 RMP . Hence
we restrict the search of the minimum point on � and we denote withJ j � the restriction
of J to �. Since S = arg min � 2 RMP JR(� ) and � intersects S only in � S, JR is a convex
function with a unique minimum point on �, which implies that JR is coercive on �
(see [23, Proposition 3.2.5, De�nition 3.2.6]). Furthermore, from point (ii) of Lemma 1,
we know that J0 is a bounded function on �. Then J j � is the sum of a coercive term
and a bounded one, therefore it is itself coercive. This allows to conclude that J admits
a minimum point on � and thus also on RMP . The second part of the thesis follows
from Lemma 2, part (i). �

Note that the above proof of existence holds also for the regularized DIC problem
proposed in [11, 12], in which the �rst order Tikhonov regularizer used instead of the
TV functional is also noncoercive.

3. Optimization methods

In previous works [9, 11, 12], the problem of DIC phase reconstruction had been
addressed with a nonlinear conjugate gradient method [24]. However, as we will see in
Section 4, these methods require in practice several evaluations of the objective function
and possibly its gradient in order to compute the linesearch parameter. What we propose
instead is to tackle problem (4) with a gradient descent algorithm in the di�erentiable
case (� > 0) and a proximal gradient method in the nondi�erentiable case (� = 0). The
key ingredients of both methods are the use of an Armijo linesearchat each iteration,
which ensures convergence to a stationary point of problem (4), and a clever adaptive
choice of the steplength in order to improve the speed of convergence.
For sake of simplicity, from now on each monochromatic image is treated as a vector in
RN (being N = MP ) obtained by a lexicographic reordering of its pixels.
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3.1. The limited memory steepest descent method

We consider �rst the HS regularizer. In this case the objective function is di�eren-
tiable and we exploit the limited memory steepest descent (LMSD) method proposed
by Fletcher [25] and outlined in Algorithm 1. The LMSD method is a standard gradient
method equipped with a monotone Armijo linesearch and variable steplengths approx-
imating the inverse of some eigenvalues of the Hessian matrixr 2J (� (n)) in order to
improve the convergence speed. Unlike the classical Barzilai{Borwein (BB) rules [26]
and their generalizations (see e.g. [27, 28, 29]) which try to approximate (r 2J (� (n))) � 1

with a constant diagonal matrix, the idea proposed by Fletcher forquadratic objective
functions is based on a Lanczos iterative process applied to approximate some eigen-
values of the Hessian matrix of the objective function. Some algebra shows that this
can be practically performed without the explicit knowledge of the Hessian itself but
exploiting only a set of back gradients and steplengths (see steps 6{10 of Algorithm 1).
Generalization to nonquadratic functions can be obtained by computing the eigenvalues
of the matrix e� in step 10 instead of � (we remark that for quadratic J the two matrices
coincide).

Some practical issues have to be addressed in the implementation ofAlgorithm 1:

� The �rst loop (step 1 to 5) builds a matrix

G =
�
r J (� (n� m)) r J (� (n� m+1) ) : : : r J (� (n� 1))

�

of sizeMP � m. The initial values for the �rst m steplengths can be provided by
the user (e.g. by computing the BB ones) or can be chosen with the same approach
described in steps 6{10 but with smaller matrices. For example, one can �x � (0)

0 ,
computeG = r J (� (0) ) and use steps 6{10 to compute� (0)

1 . At this point, de�ning
G = [ r J (� (0) ) r J (� (1) )] one can compute� (0)

2 and � (0)
3 and repeat the procedure

until a whole set ofm back gradients is available.

� The same procedure can be adopted when step 10 provides onlym0 < m positive
eigenvalues. In this case, all columns ofG are discarded,G becomes the empty
matrix and the algorithm proceeds withm0 instead ofm until a whole set ofm back
gradients is computed. Ifm0 = 0, a set ofm \safeguard" steplengths, corresponding
to the last set ofm positive steplengths values provided by step 10, is exploited for
the next m iterations.

� If GT G in step 7 is not positive de�nite, then the oldest gradient ofG is discarded
and a new matrix GT G is computed. This step is repeated untilGT G becomes
positive de�nite.

� The stopping criterion can be chosen by the user and be related to the decrease
of the objective function J or its gradient norm, or to the distance between two
successive iterates.

Concerning the computational costs of LMSD, the heaviest tasksat each iteration
are the computation of r J (� (n)) at step 1 and J (� (n) � � n r J (� (n))) at step 2.
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Algorithm 1 Limited memory steepest descent (LMSD) method

Choose�; ! 2 (0; 1), m 2 N> 0, � (0)
0 ; : : : ; � (0)

m� 1 > 0, � (0) 2 RN and setn = 0.
While True

For l = 1; : : : ; m

1. De�ne G(:; l) = r J (� (n)).
2. Compute the smallest non{negative integerin such that � n = � (0)

n � i n satis�es

J (� (n) � � n r J (� (n))) � J (� (n)) � !� nkr J (� (n))k2: (10)

3. Compute � (n+1) = � (n) � � n r J (� (n)).
If \Stopping Criterion" is satis�ed
4. Return

Else
5. Setn = n + 1.

EndIf

EndFor

6. De�ne the (m + 1) � m matrix � =

2

6
6
6
6
4

� � 1
n� m

� � � 1
n� m

. . .

. . . � � 1
n� 1

� � � 1
n� 1

3

7
7
7
7
5

.

7. Compute the Cholesky factorizationRT R of the m � m matrix GT G.

8. Solve the linear systemRT r = GT r J (� (n)).

9. De�ne the m � m matrix � = [ R; r ]� R� 1.

10. Compute the eigenvalues� 1; : : : ; � m of the symmetric and tridiagonal approximation
e� of � de�ned as

e� = diag(�) + tril(� ; � 1) + tril(� ; � 1)T ;

being diag(�) and tril( �; � 1) the diagonal and the strictly lower triangular parts of
a matrix.

11. De�ne � (0)
n+ i � 1 = 1=� i , i = 1; : : : ; m.

EndWhile

Considering step 1, we focus onr J0. As it is written in (6), due to the product between
e� i� s =� ` and (hk;� ` ) j � s, r J0 can be performed withO(N 2) complexity; this is how the
gradient is computed in [11]. However, if we take the sum overj of the residuals into
the argument of Im(�), then we can conveniently rewrite (6) as

@J0(� )
@�s

=
3X

`=1

KX

k=1

4
� `

Im
n�

(r k;� ` : � (hk;� ` 
 ei�=� ` )) 
 ~hk;� `

�

s
e� i� s =� `

o
; (11)

where h1: � h2 denotes the componentwise product between two imagesh1; h2 and
(~hk;� ` ) j = ( hk;� ` )� j for all j 2 � . Then the heaviest operations in (11) are the two
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convolutions which, thanks to the assumption of periodic boundaryconditions, can be
performed with a FFT/IFFT pair ( O(N logN ) complexity). Hence, sincer JR has
O(N ) complexity, we can conclude that step 1 has an overall complexity of O(N logN ).
Similarly, the function at step 2 is computed with complexityO(N logN ), due to the
presence of one convolution inside the triple sum in (2).

From a practical point of view, we have already shown that the LMSDmethod
is an e�ective tool for DIC imaging, especially if compared to more standard gradient
methods equipped with the BB rules [17]. From a mathematical point ofview, one
can prove, in the same way as in [30], that every limit point of the sequence generated
by Algorithm 1 is a stationary point for problem (4). In addition, the convergence of
Algorithm 1 can be asserted whenever the objective functionJ satis�es the Kurdyka{
 Lojasiewicz (KL) property [31, 32] at each point of its domain. More precisely, as shown
in a number of recent papers [33, 34, 35], one can prove the convergence of a sequence
f � (n)gn2 N to a limit point (if any exists) which is stationary for J if the following three
conditions are satis�ed:

(H 1) 9 a > 0 : J (� (n+1) ) + ak� (n+1) � � (n)k2 � J (� (n))

(H 2) 9 b > 0 : kr J (� (n+1) )k � bk� (n+1) � � (n)k

(H 3) J satis�es the KL property.

This scheme applies to the LMSD method. First of all, condition (H 3) is satis�ed
for the DIC functional de�ned in (4). Indeed J0 is an analytic function (Lemma 1, part
(iii)) and JR is a semialgebraic function, which means that its graph is de�ned by a �nite
sequence of polynomial equations and inequalities (see [36] for a de�nition). Hence J is
the sum of an analytic function and a semialgebraic one and for this reason it satis�es
the KL property on RN (see [36, p. 1769] and references therein). Conditions (H1){
(H2) follows from step 2 and 3, combined with the fact thatr J is Lipschitz continuous
(Lemma 2, part (ii)), provided that the sequence of steplengths� (0)

n de�ned at step 11
is bounded from above. Therefore we can state the following result:

Theorem 2 Let J be de�ned as in (4), f � (n)gn2 N the sequence generated by Algorithm
1 and � (0)

n � � max , where � max > 0. If � � is a limit point of f � (n)gn2 N, then � � is a
stationary point of J and � (n) converges to� � .

Proof. We start by proving condition (H 1). Step 3 of Algorithm 1 can be rewritten in
the following way:

� � n r J (� (n)) = � (n+1) � � (n) (12)

from which we have

� nkr J (� (n))k2 =
1

� n
k� (n+1) � � (n)k2: (13)

By substituting (13) in step 2 and since� n � � (0)
n � � max , we obtain

J (� (n+1) ) � J (� (n)) �
!
� n

k� (n+1) � � (n)k2 � J (� (n)) �
!

� max
k� (n+1) � � (n)k2: (14)
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Algorithm 2 Inexact linesearch{based algorithm (ILA)

Choose 0< � min � � max , �; ! 2 (0; 1),  2 [0; 1], � > 0, � (0) 2 RN and setn = 0.
While True

1. Set � n = max
n

min
n

� (0)
n ; � max

o
; � min

o
, where� (0)

n is chosen as in Algorithm 1.

2. Let h(n)
 , h(n) and  (n) be de�ned as in (18){(19). Compute ~ (n) 2 RN such that

h(n)( ~ (n)) � h(n)( (n)) � � �h (n)
 ( ~ (n)): (16)

3. Setd(n) = ~ (n) � � (n) .

4. Compute the smallest non{negative integerin such that � n = � i n satis�es

J (� (n) + � nd(n)) � J (� (n)) + !� nh(n)
 ( ~ (n)): (17)

5. Compute the new point as� (n+1) = � (n) + � nd(n) .

If \Stopping Criterion" is satis�ed

6. Return

Else

7. Setn = n + 1.

EndIf

EndWhile

Then (H 1) holds with a = !=� max . Regarding condition (H 2), we can rewrite again
step 3 as:

r J (� (n)) =
1

� n
(� (n) � � (n+1) ): (15)

Recall that the Lipschitz continuity of r J implies that there is � min > 0 such that the
linesearch parameter� n � � min (see [14, Proposition 4.2] for a proof). Then

kr J (� (n+1) )k � kr J (� (n+1) ) � r J (� (n))k + kr J (� (n))k

� Lk� (n+1) � � (n)k +
1

� n
k� (n+1) � � (n)k

�
�

L +
1

� min

�
k� (n+1) � � (n)k:

This concludes the proof of (H 2) with b = L + 1=� min . The thesis follows from [33,
Theorem 2.9]. �

3.2. Inexact linesearch{based algorithm

We now turn to the algorithm we used to address the nonsmooth TV functional. In
particular, we considered a simpli�ed version of a recently proposedproximal gradient
method called VMILA (variable metric inexact linesearch algorithm) [14]. In its general
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form, this method exploits a variable metric in the (possibly inexact) computation of
the proximal point at each iteration and a backtracking loop to satisfy an Armijo{like
inequality. E�ective variable metrics can be designed for speci�c objective functions by
exploiting suitable decompositions of the gradient of the smooth part of the objective
function itself [30, 37, 38, 39]. However, since in the DIC problem thegradient of J0

does not lead to a natural decomposition in the required form, in ourtests we used the
standard Euclidean distance (we will denote with ILA this simpli�ed version of VMILA).

The main steps of ILA are detailed in Algorithm 2. At each iterationn, given the
point � (n) 2 RN and the parameters� n > 0,  2 [0; 1], we de�ne the function

h(n)
 (� ) = r J0(� (n))T (� � � (n)) +


2� n

k� � � (n)k2 + JR(� ) � JR(� (n)): (18)

We observe thath(n)
 is strongly convex for any 2 (0; 1]. By setting h(n) = h(n)

1 and
z(n) = � (n) � � n r J0(� (n)), we de�ne the unique proximal point

 (n) := prox � n JR
(z(n) ) = arg min

� 2 RN
h(n)(� ): (19)

In step 2 of Algorithm 2, an approximation ~ (n) of the proximal point  (n) is de�ned by
means of condition (16). Such a point can be practically computed byremarking that
JR can be written as

JR(� ) = g(D� ); g(t) = �
NX

j =1







 
t2j � 1

t2j

! 





; t 2 R2N :

Then considering the dual problem of (19)

max
v2 R2N

� (n)(v); (20)

the dual function � (n) has the following form

� (n)(v) = �
k� nDT v � z(n)k2

2� n
� g� (v) � JR(� (n)) �

� n

2
kr J0(� (n))k2 +

kz(n)k2

2� n
(21)

whereg� is the convex conjugate ofg, namely the indicator function of the set
�
B 2

0;�

� N
,

being B 2
0;� � R2 the 2{dimensional Euclidean ball centered in 0 with radius� .

Condition (16) is ful�lled by any point ~ (n) = z(n) � � nAT v with v 2 R2N satisfying [14]

h(n)( ~ (n)) � � � (n)(v); � = 1=(1 + � ): (22)

Such a point can be found by applying an iterative method to problem (20) and using
(22) as stopping criterion.

Similarly to LMSD, any limit point of the sequence generated by ILA is stationary
for problem (4) [14, Theorem 4.1] and, under the assumption that alimit point exists,
the convergence of ILA to such a point holds whenJ satis�es the Kurdyka{ Lojasiewicz
property, the gradient of the smooth partr J0 is Lipschitz continuous and the proximal
point ~ (n) is computed exactly [35]. Whether and when ILA converges if the proximal
point is computed inexactly is still an open problem, therefore all we can say for
Algorithm 2 applied to the DIC problem is that all its limit points are stationary.
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4. Numerical experiments

In this section we test the e�ectiveness of the algorithms previously described in some
synthetic problems. All the numerical results have been obtained on a PC equipped with
an INTEL Core i7 processor 2.60GHz with 8GB of RAM running Matlab R2013a with
its standard settings. For each test we will report the number of function evaluations, the
number of gradient evaluations and the computational time neededby each algorithm
to provide the reconstructed phase. With this information the reader should be able to
estimate the complexity of the di�erent approaches independentlyof the environment
in which the algorithms are implemented and run. The LMSD and ILA routines for the
DIC problem together with an illustrative example can be downloaded at the webpage
http://www.oasis.unimore.it/site/home/software.html.

4.1. Comparison with state{of{the{art methods

Since in the DIC problem the evaluation of the gradientr J is computational demand-
ing and its nonlinearity w.r.t. � requires a new computation for each step of the back-
tracking loop, in [9, 11] a heuristic version of a nonlinear conjugate gradient (CG) is
used exploiting a gradient{free linesearch based on a polynomial approximation method.
Although this formulation has practical advantages, the resultingscheme is not guaran-
teed to converge, and in our tests we experienced very di�erent behaviours w.r.t. to the
choice of some initial parameters of the linesearch procedure. Forthis reason, we also
implemented several standard CG methods [24, 40], namely the Fletcher{Reeves (FR),
Polak{Ribi�ere (PR), PR with nonnegative values (PR+ ) and PR constrained by the FR
values (FR{PR) strategies [41]. For these algorithms, the global convergence is ensured
by computing the steplength parameter by means of the strong Wolfe conditions [24, 41].

The evaluations of the optimization methods have been carried out on two phantom
objects (see Figure 3), which have been computed by using the formula for the phase
di�erence between two waves travelling through two di�erent media

� s = 2� (n1 � n2)ts; (23)

wheren1 and n2 are the refractive indices of the object structure and the surrounding
medium, respectively, andts is the thickness of the object at pixels 2 � . The �rst
phantom, denominated \cone" and reported at the top row of Figure 3, is a 64� 64
phase function representing a truncated cone of radiusr = 3:2 � m with n1 = 1:33,
n2 = 1 and maximum value � max = 1:57 rad attained at the cone vertex. The \cross"
phantom, shown at the bottom row of Figure 3, is another 64� 64 phase function of
two crossing bars, each one of width 5� m, measuring 0:114 rad inside the bars and 0
in the background. For both simulations, the DIC microscope parameters were set as
follows:

� shear: 2� x = 0:6 � m;

� bias: 2� � = �= 2 rad;
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Figure 3. Data and results for the cone (top row) and cross (bottom row) objects.
From left to right: true object, noisy DIC color image taken at shear angle �

4 rad and
corrupted with white Gaussian noise at SNR = 4.5 dB, and reconstructed phase with
the LMSD method from observations at shear angles equal to� �= 4 rad and �= 4 rad.

� numerical aperture of the objective: NA = 0:9.

For each phantom, a dataset consisting ofK = 2 polychromatic DIC images acquired at
shear angles� 1 = � �= 4 rad and� 2 = �= 4 rad was created, as in model (1), by convolving
the true phase function with the accordingly rotated DIC PSFs andthen by corrupting
the result with white Gaussian noise at di�erent values of the signal{to{noise ratio

SNR = 10 log10

�
� �

�

�
(24)

where � � is the mean value of the true object and� is the standard deviation of noise.
The SNR values chosen in the simulations were 9 dB and 4:5 dB.

As far as the regularization parameter� and the threshold� in (5) are concerned,
these have been manually chosen from a �xed range in order to obtain a visually
satisfactory reconstruction. Note that the parameters were �rst set in the di�erentiable
case (� > 0) for the LMSD and the nonlinear CG methods and then the same value of
the parameter� was used also in the nondi�erentiable case (� = 0) for the ILA method.
The values reported below have been used for each simulation presented in this section.
The resulting values have been� = 10� 2; � = 10� 2 for the cone and� = 4 �10� 2; � = 10� 3

for the cross.
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Some details regarding the choice of the parameters involved in the optimization
methods of Section 3 are now provided. The linesearch parameters� , ! of the LMSD
and ILA methods have been respectively set to 0:5, 10� 4. These are the standard choices
for the Armijo parameters, however it is known that the linesearchalgorithm is not so
sensible to modi�cations of these values [30, 42]. The parameter in the Armijo{like
rule (17) has been �xed equal to 1, which corresponds to the mildest choice in terms
of decrease of the objective functionJ . The parameterm in Algorithm 1 is typically
a small value (m = 3; 4; 5), in order to avoid a signi�cant computational cost in the
calculation of the steplengths� (0)

n ; here we letm = 4. The same choice form is done
in Algorithm 2, where the values� (0)

n are constrained in the interval [� min ; � max ] with
� min = 10� 5 and � max = 102. The dual problem (20) is addressed, at each iteration
of ILA, by means of algorithm FISTA [43] which is stopped by using criterion (22)
with � = 10� 6. This value represents a good balance between convergence speed and
computational time per iteration [14]. Concerning the nonlinear CG methods equipped
with the strong Wolfe conditions, we use the same parameters as done in [41] and we
initialize the related backtracking procedure as suggested in [24, p.59]. Regarding the
CG methods endowed with the polynomial approximation, a restart of the method is
performed by taking a steepest descent step, whenever the search direction fails to be a
descent direction. Finally, the constant phase object� (0) = 0 is chosen as initial guess
for all methods.

In order to evaluate the performance of the phase reconstruction methods proposed
in Section 3, we will make use of the following error distance

E(� (n) ; � � ) = min
c2 R

k� (n) � � � � c1k
k� � k

=
k� (n) � � � � �c1k

k� � k
(25)

where � � is the phase to be reconstructed and �c =
P

j 2 �

(� ( n )
j � � �

j )

N . Unlike the usual root

mean squared error, which is recovered by settingc = 0 in (25), the error distance
de�ned in (25) is invariant with respect to phase shifts, i.e.

E(� + c1; � � ) = E(�; � � ); 8� 2 RN ; 8c 2 R: (26)

That makes the choice of (25) well{suited for problem (4), whose solution might be
recovered only up to a real constant.

The methods have been run for the cone and cross phantoms with the parameters
setting previously outlined. Since in the unconstrained di�erentiablecase the goal is to
vanish of the gradient ofJ , the iterations of the LMSD and the CG methods have been
arrested when the following stopping criterion based on the decrease of the gradient
norm

kr J (� (n))k � � (27)

was met with � = 4 � 10� 2 for the cone and� = 10� 3 for the cross. On the other hand,
since with the TV functional the gradient is not available, the ILA method has been
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Figure 4. Error versus computational time plots for the cone (top row) and cross
(bottom row) objects. From left to right: noise{free data, SNR = 9 dB and SNR =
4.5 dB.

stopped when the error up{to{a{constant between two successive iterates was lower
than a pre�xed � > 0, that is



 � (n+1) � � (n) �

�
� (n+1) � � (n)

�
1





k� (n+1) k
� �; (28)

where � (n+1) � � (n) is the mean value of the di�erence between the two objects. The
tolerance � in (28) was set equal to 5� 10� 5 for the cone and 10� 4 for the cross. We
remark that these values, as the ones suggested before for thestopping criterion (27),
have been tuned in order to obtain sensible reconstructions with errors close to the op-
timal ones.

In Figure 4 we show the reconstruction error provided by the di�erent methods
as a function of the computational time. Among the CG methods, wereport only
the results obtained by the PR algorithm combined with a polynomial{approximation{
based linesearch (PR{PA) and the FR{PR one in which the linesearch parameter is
computed with the SW conditions (FR{PR{SW), since they always outperformed the
other possible choices. From the plots of Figure 4, it can be drawn that each method
is quite stable with respect to the noise level on the DIC images. However, in terms
of time e�ciency, LMSD outperforms the CG methods in both tests,showing a time
reduction of at least 50% to satisfy the stopping criterion. We report some further details
in Tables 1 and 2 on the computational cost of the di�erent methods. Of course the
numerical values in the tables depend on the tolerances chosen forthe stopping criteria,
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SNR (dB) Algorithm Iterations # f # g Time (s) Obj fun Error

1

PR{PA 37 465 37 2.55 0.89 1.74 %
FR{PR{SW 38 157 157 2.44 0.89 2.09 %

LMSD 29 35 29 0.55 0.89 1.64 %
ILA 66 119 66 1.77 0.52 1.76 %

9

PR{PA 31 389 31 2.12 1.65 1.81 %
FR{PR{SW 37 142 142 2.24 1.65 2.19 %

LMSD 29 35 29 0.55 1.65 1.69 %
ILA 60 91 60 1.56 1.29 1.91 %

4.5

PR{PA 41 514 41 2.79 6.88 2.57 %
FR{PR{SW 34 115 115 1.81 6.88 2.54 %

LMSD 29 35 29 0.54 6.88 2.22 %
ILA 61 104 61 1.56 6.80 2.50 %

Table 1. Cone tests. From left to right: number of iterations required to meet
the stopping criteria, number of function and gradient evaluations, execution time,
objective function value and error achieved at the last iteration.

but some general considerations can be drawn, e.g., on the numberof evaluations ofJ
and r J (r J0 for ILA). For instance, in the case of the cone (Table 1), LMSD evaluates
the function less than 2 times per iteration. By contrast, the backtracking procedure
exploited in the FR{PR{SW method requires an average of 4 evaluations per iteration of
both the function and gradient to satisfy the strong Wolfe conditions, whereas the PR{
PA method, despite evaluating the gradient only once, need on average 12 evaluations
of the function before detecting the correct three{points{interval (see [11]). One could
reduce the number of evaluations in PR{PA by properly tuning the initial parameters
of the linesearch. However, as mentioned before, this method is quite sensitive to this
choice, and little variations might result in a great increase of the number of restarts and,
eventually, in the divergence of the algorithm. In addition, it seems that the optimal
value of these parameters strictly depends on the object to be reconstructed.

4.2. Comparison between LMSD and ILA

We now compare the performance of LMSD and ILA. On one hand, ILA reconstructs the
cross object slightly better than LMSD. Indeed, ILA provides thelowest reconstruction
error in Table 2 for each SNR value and the corresponding phase estimates have better
preserved edges, as clearly depicted in Figure 5, where we considerthe following \up{
to{a{constant" residual

Rj =
�
�� j � � �

j � � � � �
�
� ; 8j 2 � (29)

to measure the quality of the reconstructions provided by the twomethods. This result
was expected, since ILA addresses problem (4) with the standardTV functional ( � = 0
in (5)), which is more suited than HS regularization (� > 0) when the object to be
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SNR (dB) Algorithm Iterations # f # g Time (s) Obj fun Error

1

PR{PA 138 1373 138 6.73 1.01 1.98 %
FR{PR{SW 109 423 423 6.14 1.01 1.98 %

LMSD 168 231 168 3.09 1.01 2.00 %
ILA 100 176 100 7.18 0.87 1.66 %

9

PR{PA 121 1209 121 5.97 1.96 2.26 %
FR{PR{SW 106 323 323 4.69 1.96 2.25 %

LMSD 140 190 140 2.52 1.96 2.27 %
ILA 57 106 57 2.60 1.82 1.94 %

4.5

PR{PA 98 997 98 4.97 8.57 3.63 %
FR{PR{SW 96 300 300 4.41 8.57 3.63 %

LMSD 152 221 152 2.75 8.57 3.64 %
ILA 97 179 97 5.26 8.47 3.46 %

Table 2. Cross tests. From left to right: number of iterations required to meet
the stopping criteria, number of function and gradient evaluations, execution time,
objective function value and error achieved at the last iteration.

reconstructed is piecewise constant. On the other hand, ILA maybe computationally
more expensive since, unlike LMSD, it requires to iteratively solve theinner subprob-
lem (20) at each outer iteration. Indeed, looking at Table 2 we noticethat, although
the number of function evaluations per iteration in LMSD and ILA is quite similar (on
average around 1:4 for LMSD and 1:8 for ILA) and the ILA iterations are stopped way
before the LMSD ones, the computational time in ILA is always higher. For instance,
in the case SNR = 9 dB, the methods require approximately the same time, although
the number of iterations of ILA is more than halved. This fact is explained if we look
at the average number of inner iterations required by ILA to compute the approximate
proximal point: 21:3, 10:11 and 13:43 for SNR = 1 ; 9; 4:5 dB respectively. Analogous
conclusions on the costs per iteration can be drawn by considering the results on the
cone object (see Table 1). In this case, LMSD is able to achieve a lower reconstruction
error w.r.t. ILA in very few iterations, providing a remarkable gain in the computational
time needed.

In order to deepen the analysis between the di�erentiable TV approximation and
the original nondi�erentiable one, we compared the LMSD and ILA methods in one
further realistic simulation. In particular, we considered the \grid" object in Figure 6,
which is a 1388� 1040 image emulating the phase function of a multi{area calibration
artifact [44], which measures 1:212 rad inside the black regions and 2:187 rad inside the
white ones. The setup of the two methods is identical to that of theprevious tests (with
the exception of the numerical aperture of the objective NA whichhas been set equal
to 0.8), and the parameters� (for both models) and� (for the smooth TV functional)
have been set equal to 2� 10� 1 and 10� 1, respectively. Instead of three levels of noise,














