A. Bellogín, A. Said, and A. De-vries, The Magic Barrier of Recommender Systems ??? No Magic, Just Ratings, Proc. of the 22nd Conf. on User Modelling, Adaptation and Personalization (UMAP), 2014.
DOI : 10.1007/978-3-319-08786-3_3

J. Bobadilla, F. Ortega, H. , and A. , A collaborative filtering similarity measure based on singularities, Information Processing & Management, vol.48, issue.2, pp.204-217, 2012.
DOI : 10.1016/j.ipm.2011.03.007

URL : http://oa.upm.es/15282/1/INVE_MEM_2012_123415.pdf

S. Castagnos, A. Brun, and A. Boyer, When diversity is needed... but not expected! In IMMM 2013, The Third Int, Conf. on Advances in Information Mining and Management, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931805

M. Claypool, A. Gokhale, M. , and T. , Combining content-based and collaborative filters in an online newspaper, Proceedings of the SIGIR Workshop on Recommender Systems: Algorithms and Evaluation, 1999.

D. Prete, L. Capra, and L. , differs: A mobile recommender service, Proc. of the 2010 Eleventh Int. Conf. on Mobile Data Management , MDM '10, pp.21-26, 2010.

M. Ghazanfar and A. Bennett, Fulfilling the needs of gray-sheep users in recommender systems, a clustering solution, 2011.

M. A. Ghazanfar, A. , and P. , Leveraging clustering approaches to solve the gray-sheep users problem in recommender systems, Expert Systems with Applications, vol.41, issue.7, pp.3261-3275, 2014.
DOI : 10.1016/j.eswa.2013.11.010

D. Goldberg, D. Nichols, B. Oki, T. , and D. , Using collaborative filtering to weave an information tapestry, Communications of the ACM, vol.35, issue.12, pp.61-70, 1992.
DOI : 10.1145/138859.138867

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Gras, A. Brun, A. , and B. , Identifying Grey Sheep Users in Collaborative Filtering, Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, UMAP '16, p.9, 2016.
DOI : 10.1007/978-1-4899-3324-9

URL : https://hal.archives-ouvertes.fr/hal-01303284

B. Gras, A. Brun, and A. Boyer, Identifying Users with Atypical Preferences to Anticipate Inaccurate Recommendations, Proceedings of the 11th International Conference on Web Information Systems and Technologies, 2015.
DOI : 10.5220/0005412703810389

URL : https://hal.archives-ouvertes.fr/hal-01254172

M. Grcar, D. Mladenic, B. Fortuna, and M. Grobelnik, Advances in Web Mining and Web Usage Analysis, chapter Data Sparsity Issues in the Collaborative Filtering Framework, pp.58-76, 2005.

M. Grcar, D. Mladenic, and M. Grobelnik, Data quality issues in collaborative filtering, Proc. of ESWC-2005 Workshop on End User Aspects of the Semantic Web, 2005.

J. Griffith, C. O-'riordan, and H. Sorensen, Investigations into user rating information and predictive accuracy in a collaborative filtering domain, Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC '12, 2012.
DOI : 10.1145/2245276.2245458

S. Huang, Designing utility-based recommender systems for e-commerce: Evaluation of preference-elicitation methods, Electronic Commerce Research and Applications, 2011.
DOI : 10.1016/j.elerap.2010.11.003

Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, issue.8, pp.30-37, 2009.
DOI : 10.1109/MC.2009.263

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Manouselis, G. Kyrgiazos, and G. Stoitsis, Exploratory study of multi-criteria recommendation algorithms over technology enhanced learning datasets, Journal of e-Learning and Knowledge Society, vol.10, issue.1, 2014.

A. Y. Ng, regularization, and rotational invariance, Twenty-first international conference on Machine learning , ICML '04, p.78, 2004.
DOI : 10.1145/1015330.1015435

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Nigam, Using maximum entropy for text classification, IJCAI-99 Workshop on Machine Learning for Information Filtering, pp.61-67, 1999.

M. Penn and K. Zalesne, Mircotrends: the small forces behind tomorrow's big changes, 2007.

A. Rashid, S. Lam, A. Lapitz, G. Karypis, and J. Riedl, Web Mining and Web Usage Analysis, chapter Towards a Scalable kNN CF Algorithm: Exploring Effective Applications of Clustering, 2008.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, GroupLens, Proceedings of the 1994 ACM conference on Computer supported cooperative work , CSCW '94, 1994.
DOI : 10.1145/192844.192905

V. Schickel-zuber and B. Faltings, Overcoming Incomplete User Models in Recommendation Systems Via an Ontology, Proc. of the 7th Int. Conf. on Knowledge Discovery on the Web, We- bKDD'05, pp.39-57, 2006.
DOI : 10.1007/11891321_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Verbert, N. Manouselis, X. Ochoa, and M. Wolpers, Context-Aware Recommender Systems for Learning: A Survey and Future Challenges, IEEE Transactions on Learning Technologies, vol.5, issue.4, 2012.
DOI : 10.1109/TLT.2012.11

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Yu, C. Hsieh, S. Si, and I. S. Dhillon, Parallel matrix factorization for recommender systems, Knowledge and Information Systems, vol.11, issue.1???2, pp.793-819, 2014.
DOI : 10.1145/1390156.1390208

M. Zanker, M. Fuchs, W. Höpken, M. Tuta, and N. Muller, Information and communication technologies in tourism, chapter Evaluating recommender systems in tourism a case study from austria, 2008.

A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken, Statistical debugging of sampled programs, Advances in Neural Information Processing Systems 16, pp.603-610, 2004.
DOI : 10.1145/1143844.1143983