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Abstract. The design and implementation of a hardware aratelededicated
to Binary Arithmetic Decoding Engine (BADE) is presssh This is the main
module of the Context-Adaptive Binary Arithmetic Dedeo (CABAD), as used
in the H.264/AVC on-chip video decoders. We propasd implement a new
approach for accelerating the decoding hardwarthefsignificance map by
providing the correct context for the regular haadsvengine of the (CABAD).
The design development was based on a large ssbfbare experiments,
which aimed at exploiting the characteristic bebawf the bitstream during
decoding. The analysis gave new insights to propas@ew hardware
architecture to improve throughput of regular eergifor significance map with
low silicon area overhead. The proposed solutios described in VHDL and
synthesized to standard cells in IBM 0.8 CMOS process. The results show
that the developed architecture reaches 187 MHz aviton optimized physical
synthesis.

Keywords: Hardware Dedicated Architectures for Decoding HI/284C
Video Standard, Arithmetic Entropy Coding, CABAC, CABAD

1 Introduction

The growing importance of high definition digitaideos, mainly for real-time
application, is calling for higher video compressiefficiency to save storage space
and transmission bandwidth [1]. The most advandeddard is the H.264/AVC,
currently at the commercial state-of-the-art, defiroy the ITUT/ISO/IEC [2]. This
standard defines a great set of tools, which actlifferent domains of image
representation to get higher compression ratiagghty doubling the ratio obtained,
by the MPEG-2 compressors [2]. The H.264/AVC introgls many innovations in the
techniques used to explore the elimination of #@undancies found in digital video
sequences.

The H.264/AVC standard specifies two alternativarapy methods: CAVLC
(Context-Adaptive Variable Length Coding) and CABAContext-Adaptive Binary
Arithmetic Coding) [1]. Both are based on the fHwt the digital video sequences
present non-stationary but predictable statistibehavior [3]. Moreover, this



statistical behavior is highly dependent on thestgp content that is being processed
and on the video capture technique [1, 2]. To akthis issue, the H.264/AVC
adopts an innovative approach that provides dynami@ptive probabilities
estimation, which is introduced in the CAVLC and BAC [3] coding schemes.

The CABAC is the most important entropy encodingthmd defined by the
H.264/AVC standard, allowing the H.264/AVC to rea&b% coding gain over
CAVLC [2]. However, to obtain these coding gainssignificant computational
complexity is added in the coding hardware. Morepvihe coding algorithm is
essentially sequential, as each step iterationymes only one bit and the next step
depends on the values produced in the previoustiies [1]. The sequential nature of
the CABAD leads to significant performance bottleksein the decoder. Many works
found in the literature address these constraiyisg to break data dependencies
inherent to the nature of CABAC.

The goal of this work is to present a new hardwanehitecture to improve the
throughput of the CABAD arithmetic engines. The hétectural design aims to
achieve a very efficient implementation, based on experiments for a detailed
bitstream flow analysis.

Next section presents an overview on context-adainary arithmetic codec and
the arithmetic engines are also detailed. Sectipre8ents related works found in the
literature. The bitstream flow analysis by simudatiis discussed in Section 4. The
architecture proposal is detailed in Section 5. Tésults of our architecture after
synthesis are presented in Section 6. Section ¥ahéation process applied in this
case study are discussed. Finally, Section 8 aslelsesome conclusions and future
work.

2 Context Adaptive Binary Arithmetic Codec Overvew.

The context-adaptive binary arithmetic codec aiddfby H.264/AVC standard is a
framework for entropy encoding that transforms ¥hkie of a symbol in a word of
code, with variable length near the theoreticalitliof entropy [3]. It works with
recursive interval divisions combined with contembdels that allow better coding
efficiency [3]. Each subinterval represents a uaigaurce symbol, and the size of the
interval is proportional to that symbol probabiligf occurrence [3]. However,
modeling occurrence probabilities of each symbahds increasing computational
complexity. One way to decrease this computatimoshplexity is to use a binary
alphabet [3].

The H.264/AVC standard, in its main and high pesfjl supports the binary
arithmetic coding/decoding, from the macroblockelgyto deal with information
generated by the tools that act on the transfodurr@ancies of the following kinds:
spatial, temporal, and psycho-visual [2]. In therepy methods of H.264/AVC
standard the information that is arriving at thguts of the encoding process or at the
outgoing outputs in the decoding process are naByedax Elements (SE) [3]. The
SE is composed by the following information: i) ¢éypused for codec control to
determine the encoding process to be used; ii)tled/alue to be encoded based on
the control information provided [2].



The decoding process is named CABAD and the engodinreferred to as
CABAC. The encoding process receives at the inftg @ith its type and value.
Considering the SE type, a binarization methogjsliad to convert the SE value into
a binary alphabet [2]. Then, the context model del¢he appropriate context and
sends it to the stage of arithmetic coding, resipdensfor generating the output
bitstream and updates the context models. In Fighel integrated encoding and
decoding dataflow is presented. Both encoding awbding processes are composed
by three steps that can be organized into four mesgdwhich are described in the
following subsections

Fig. 1. CABAC and CABAD dataflow diagram with the three sisagand four modules that
compose the encoder and decoder.

As shown in Fig. 1 both encoding and decoding mees are composed by four
modules can be organized into three stages thatem@ibed below:

Binarization/Anti-Binarization: The binarization process consists of
mapping SE values for a unique sequence of bitsdpresents the original
value. This mapping is done to reduce the symimolké encoding alphabet,
thus simplifying the amount of elements to be medeind minimizing the
costs of the context modeling and facilitating ttask of arithmetical
coding. Each bit, generated through this procesdenoted as "bin" and the
set of all "bins" (bits) is named "binstring". From total of seven
binarization methods, four are fundamental: unamyncated unary; fixed
length; and exponential Golomb [2, 3].
Probability modeling: A context is a probabilistic model that represemts
statistical distribution of a particular symbol tre basis of the review of
the symbols previously processed and the probglmfitoccurrence of the



current symbol. To adequately model all probaletitof occurrence of each
symbol, CABAC defines 460 different contexts. Eddh of an SE can be
associated with one or more contexts. During theoeimg the probabilistic
estimates must be kept updated to ensure the agcafdahe process. Each
context model is composed by a pair of values, kit 8tate value for the
probability index (63 possible probability statem)d a binary value for the
most probable symbol "MPS". The state value is ws®dn index to the
estimated probability value of the least probaphalsol "LPS"[2, 3].

Binary Arithmetic Coder (BAC), or Decoder (BADE): It works based on
the principle of recursive division of the interval width R [3]. From the
estimation of probability for LPS (pLPS) on a givemge, two subintervals
are obtained. The first is given by: rLPS = R * @_Rhich is associated
with LPS while the second (which is related to MBBSjiven by: rMPS = R
- rLPS. According to the encoded bin the rMPS dP3$Lis chosen as new
interval R. To simplify the computational complgxithe value of R is
guantized to 2 bits and the multiplication for rLP&8ues are pre-stored in a
64x4 fixed 2-D table indexed by the 6-bit state swgrfrom context model
and by the 2-bit quantized value of R. During bynarithmetic coding
process two registers (range "R" and offset "O§ aeeded to keep the
interval updates. The first one saves the curretgrval range while the
second marks the lower bound within this interediget) [2, 3].

2.1 CABAD Algorithm Overview

The CABAD process involves a set of actions thaodelow the slice layer. Fig. 2
shows the flow chart for these actions. For each siice a new CABAD iteration
happens. At the beginning of a slice a new contalste is built from probability
algorithm based on initial tables that depend andlice type and of an index value
(three possibilities) sent by the encoder. AftatttCABAD initializes the variable
CodlOffset getting the first nine bits reading frahre encoded bitstream and the
variable CodIRange si set to default value [2].

The CABAD decoding of macroblock layer of SE valwe performed until an
"End One Slice" (EOS) SE type is found. The firgpsin the SE decoding is the
decision of its type and, based on this informatiochooses an anti-binarization
method [2]. After that, if the SE type is an EOBert terminal decoding process is
selected. Otherwise, for each bin of SE one ofather decoder processes, regular or
bypass, must be chosen. For bins being decodeédwlar process a context table
address calculation must be done. The informatietnieved from context table
includes the MPS and its probability estimate inderoted by pState variable. The
CABAD uses an offset fixed for each SE type combiméth an increment defined by
different possible forms, according to the SE typeonformance with [2] to generate
context table addresses. For some SEs, obtainargnrent index involves referring
to SE from the left, top and current macroblock,dod others, the bin index is used
for this purpose.

For bins that use the regular decoding proces€#&®AD obtains new rLPS from
a look-up in a fixed pre-stored table indexed byapsand then one of four possible



values is selected by value of quantized CodIRgd@gellRange>>6) [2]. Then, new
value of CodlRange is calculated and the comparisetween CodIRange and
CodlOffset define if MPS or LPS happens. After thidile context table must be
updated with new values for MPS and pState whiehaddatained from a fixed table
with state transition with different values for MRS LPS occurrence. Next, the
CodIRange and CodlOffset registers are availabtetife normalization process. In
this case one or more bits of bitstream can bewuvoad [2]. Finally, one step of
regular decoding process is finished; the contextslel and decoding environment
register are updated. For other bins the bypassdileg process is applied. The
bypass mode is simpler than the regular mode. Thati;binarization module is
performed and the results of this operation deteenfithe binstring produced by the
decoding environment matches with the method explent not
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Fig. 2. CABAD algorithm flow diagram shows the action sequeemeleased by CABAC
Decoder to process each one SE inside of thelaljee.

3 Related Work

Techniques to reduce the latency and data depeypdér@ABAD have been widely
discussed in the literature and they follow fivesibaapproaches: pipeline; contexts
pre-fetching and cache; elimination of renormalaatloop; parallel decoding
engines; and memory organization. The pipelindessais used in [4] to increase the
bins/cycle rate. An alternative to solve the laterd renormalization process is
presented in [5]. The speculative processing thnothge use of engines decoding



parallel is explored first in [6], then in [7] arifl]]. High efficiency in the decoding
process using pre-fetching and cache contextsugsed in [6] and [9], respectively.
Memory optimization and reorganization are addreas¢4].

The work of [8] presents optimizations in the amtitic engine through the parallel
execution in speculative mode and the adoptioneaflihg zero anticipation that
allows counting of consecutives zeros in CodlRargeese two approaches bring
reductions in the delay in the critical path.

The hardware architecture proposed in [6] is basednalysis of the relationship
between bins count for each SE type and the oaweref each SE type in one
macroblock. The usage rate imposed by each SEcim@&zathe three decoder engines
is a relevant aspect that is used to optimize teeadl decoding process.

An evaluation of the data dependencies in the eegubde of decoder arithmetic
engine is presented in [7]. In this study, the @iexaey of changes to CodlIRange and
CodlOffset registers are considered for cases wtarermalization process happens
combined with the observation of MPS or LPS deaisio

Considering the various architectures proposed Mferdnt authors for the
CABAD, a static characteristics analysis of coriateafor decoding bitstream process
was considered and some experiments were condbgtesbftware simulations to
extract the dynamic behavior of the decoder flowisTanalysis is addressed in
Section 4.

4 Bitstream Flow Analysis for Decoder Process

All our analyses were based on results obtaineth fatatistical data collected by
software routines that we introduced into the decothodule of the reference
software (JM), version 10.2 [10]. To reach morerespntative data set in our analysis
we decided to work with four different digital videesolutions, in YUV video format
4:2:0, more often used in the reports found in literature: QCIF, CIF, D1 and
HD1080p. Moreover, we evaluated the impact of thangization parameters on the
bitstream behavior. For our statistics we seleetd8 QCIF, 17 CIF, 18 D1 video
sequences available in [11], and also seven additidD1080p video sequences. The
last are designated as: rush-hour; riverbed; btye-gactor; sunflower; station2;
pedestrian area. In total, there were 60 digitdewi sequences in this analysis, each
with 200 frames. Fig. 3 show one frame of the HDO®8ideo sequences used in this
case study in additional to QCIF, CIF and D1 listedable 1.



Fig. 3. Samples of HD1080 video sequence, that named:trash riverbed; blue-sky; tractor;
sunflower; station2; pedestrian area, respectively.

Table 1. All video sequence used in this case study.

Video Sequences

QCIF CIF D1 HD1080
(176x144) (352x288) (720x480) (1920x1080)
Akiyo Bridge-close Abstract | Bluesky
Bridge-close Bridge-far Artant Pedestrian
Bridge-far Bus Chips Riverbed
Carphone Coastguard Concert| Rush-hour
Claire Container F1 Station2
Coastguard Flower Football | Sunflower
Container Foreman Ice Tractor
Foreman Hall Leaves
Grand-mother High Way Letters
Hall Mobile Mobile
Highway Mother-daughter Parkrun
Miss-america News Rafting
Mobile Paris Rugby
Mother-daughter Silent Seawall
News Stefan Suzie
Salesman Tempete Tempete
Silent Waterfall Toweres
Suzie Waterfall

The encoding parameters employed for coding alleeces were: Profile IDC =
77, Level IDC = 40, SymbolMode = CABAC, GOP=IPBBdaRDO=0ON. Our
experimental procedure was to perform, for all th@eo sequences, six different
encoding processes, varying the parameters of iqation QPISlice and QPPSlice in
pairs; namely the pairs were: 0:0, 6:0, 12:6, 182418, and 36:26, resulting in a
total of 420 digital video sequences encoded. Téeoding process was done for all
encoded sequences using the JM v.10.2 decodeo|l&xtcthe statistics data and to
obtain feedback for the validation process. Thati@hs and statistical behavior were
studied and synthesized, and they will be presemtet

One of the problems of CABAD is to determine théuatthroughput needed for
the decoding process to occur in real-time. Thippkeas because the length of
codeword generated by CABAD is variable and mayngbasignificantly between



iterations, since the coding method is cor-adaptive. Furthermore, for sonSE
types it can be difficult to determine the bingfriength and the SE sequence, as-
vary according to the slice type and the macrobloge. However, H.264/AV(
standard in its level 4.0 defines the uj-limit bit/rate at 20Mbps. We analyzed t
bit count at the input and output of the CABAD, hefauantization, and the rat
between them varies between 1.3 and 2.1 times., Maercan consider that, in t
worst case, the architecture has to process atyné2aMbps, to reach throughp
enough for reatime decoding at 30 frames per second in the 108920 forms
(1080p).

The Binary Arithmetic Decoder Engines (BADE) are tBABAD kernels. The'
are responsible for regenerating the binstring esin€ the bitstream and interr
variables. Each bifs produced by one of three BADE kinds. Considettingt the
decoding process is done bin by bin, it requirggh lperformance because inside
module resides the CABAD critical path. The BADEsia organization is shown i
Fig. 4.
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Fig. 4. The three kinds of Binary Arithmetic Engines presémto CABAC core, its
organization and they connection with the intenegister.

The H.264/AVC standard defines which type of BAD#j@e each Simust use.
Moreover, part of binstring of one Sype can be produced by one BADE type wl
another part can be produced by ¢ one. The regular engine is the most comp
BADE block andis used on most SEshe bypass engine is only used by the st
part of motion vector differential (MVD) and transins coefficient (COEF
Additionally, the signal bits of COEF have to beated in the bypass enginDuring



software profiling, the BADE engine utilization lsach SE type was observed to
determine the better strategy for the dedicatelitacture design.

By analyzing the bins count occurrence in the t@tsh we observed that just four
SE types (coded_block flag, coeff _level, sig_cddfy and last_sig_flag) account
for more than 93% of all bins, in average, fortglies of macroblocks. Thus, a deeper
analysis of the behavior of these SE types wapagd to improve the gain in the
BADE. In the first study we investigated the binstidbution for different SE types in
each one macroblock types. In the Table 2 theteesblained are summarized.

Table 2. Distribution of bins by different SE types forcbamacroblock type.

Information Code Block | Sig & Last | Coefficient | Other SEs
Flag (%) Flags (%) Levels (%) (%)
Total occurs 2.32 60.38 34.30 3.00
| MB Bins generated 0.6Y 17.62 80.00 2.31
Regular Procesg 0.86 22.31 74.68 2.15
Bypass Process 0] 0 100 0
Total occurs 2.51 58.50 37.97 1.92
P MB Bins generated 1.4y 34.21 62.05 2.27
Regular Procesg 1.76 40.95 54.90 2.39
Bypass Process D 0 98.33 1.67
Total occurs 2.6 57.58 38.56 1.25
B MB Bins generated 1.80 39.715 46.29 12.16
Regular Process 2.17 47.98 37.46 12.39
Bypass Process D 0 98.97 1.03
Total occurs 2.55 58.07 37.65 1.73
Average Bins generated 1.54 35.14 61.10 2.22
Regular Processg 1.86 42.41 53.30 2.43
Bypass Process 0 0 98.78 1.22

The results show that there are, on the averagenssignificant coefficient flag
(SE_SIG) and five least significant coefficientfl&SE_LAS) for each 4x4 residual
blocks. The utilization of arithmetic engines shotiit regular engines produce
80.8% of bins count while the bypass produced 1902%em. Another interesting
fact is that many bins produced by regular and bypsa generated in a consecutive
way, 84.92% and 29.35%, respectively.

The occurrence of bins related to the SEs of tgaifsiance map (SE_SIG and
SE_LAS) also deserve emphasis, since togethertdmgsent between 27% and 36%
of all bins processed by the CABAD. Moreover, thegve special interest for
decoding engines since they usually occur in sezpjare. each SE_SIG is followed
by a SE_LAS. However, this does not occur whervtiiee of SE SE_SIG is zero, in
this case the next SE decoded should be anothé8ESEAS. Fig. 5 illustrates the
relationship between bins occurrence of the sigaifce map for each of the
resolutions discussed, highlighting the percentdijerence occurrences between
SE_SIG and SE_LAS.
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Fig. 5.Bin occurrences for Significance Map SE in eachlgem used

5 Design Architecture

The proposed architecture developmwas based on observations made on
behavior of the bitstream for many coding scenaaiud on few previous works foul
in the literature. The bitstream flow analyses hawewn that for some specit
situations using an approach with specialized miing can provide throughput gai
in the decoding process. As presented in sectia® &d 4, the exploration of tl
parallel speculative execution of BADE engines ggoad alternative to reach grea
throughput without excessive area incre

Our desig is based on the work presented in [12] which iapphultiple paralle
engines for speculative execution. In this workinaude few extensions mainly
the regular branch. The new arrangements in th@laegngine interconnections a
at exploring chracteristics behavior of the SE_SIG and for the %S kinds of the
syntax element to reach high throughput in theiS@@mce map decoding

From the work presented by Yu and He in [6] a digant part of the ne\
proposed architecture for CABAD makuse of two regular engines for decodin
variable number of bins per cycle. Depending orhdawplementation, the conte
modeling can provide one or two context models regular engines branch, th
varying the efficiency of the decoding. But, foresial situations this approach m
not improve efficiency because according to theisiee of the first regular engir
the second bin for each one of these engines teeds a different conte

The H.264/AVC standard defines that each 4x4 coefit bock should refer t
one significance map [2]. This map set is compdsetivo types of SE (SE_SIG al
SE_LAS) which should occur in a specific order. Hignificance map is generat
according to the process order and the coefficiealise. The procesor generatiot
of the significance map for a 4x4 coefficieblock example is shown in Fig. The
Index line shows the indeor the values in zig-zagcan order while the Value lir
shows each one coefficients value for a 4x4 exarbjgek. The lines wittFlag SIG
and Flag LAST show the composition of the significa map for the 4x4 examg
block.



Fig. 6. Significance Map generation for a 4x4 coefficieitsck.

As shown in Fig. 6 for each SE_SIG with value edoabne there is one SE_LAS,
but when the SE_SIG is equal to zero then the SIS lefement does not occur.
Based on the results analysis, summarized in the5riit is possible to identify that
this mismatching between SE_SIG and SE_LAS paipéag, in average, for roughly
30% of the cases in the HD1080 video sequencesmbaéested. This fact opens the
opportunity to explore decoding optimizations, sfieally as to when one specialized
process to supply the correct context for BADE lbarused.

The proposed architecture employs multiple engimssances for the case of
variable number of bins per cycle, and also adspézialized mechanism for context
selection. Our design basic structure is showridn F.

Fig. 7. BADE core with arrangement.

As Fig. 7 shows, the three kinds of engines prese@ABAD are organized in
one hierarchical arrangement, namely: one termieatgne, two regular engines and



four bypass engines. The BADE block (in Fig. 7)eiges three context pairs (STATE
and MPS) and the bitstream buffer (BS). Accordimghie SE kind, one of its engines
is used. The Regular and Bypass engine instanee®rganized into two distinct
branches. Inside the Regular branch two bins caprbéuced in one cycle while in
the Bypass branch at most four bins can be prodircadsingle cycle. The Regular
engine is more complex than the other engines,canthins the critical path of this
module. We used optimizations to reduce the deldlyis block.

Initially an operations reordering is made by tegular engine, as the approach
presented in [7]. This results in two parallel gathside the regular engine, one to
treat the occurrence of the MPS and another fot B®. Another important aspect is
the access to static memories to retrieve informnasibout the next state (access the
MPS_TABLE, and the LPS TABLE) and the rLPS estimgteobabilities
(RLPS_TABLE). These memories are addressed by @Sudtich is provided from
the context model stored in the context memory. Twt that these memories are
inside the regular engine affects the critical p&lwrthermore, when we concatenate
two regular engines, two accesses to these menioribe same cycle is required. To
solve this problem we apply an approach similathd adopted in [13], in which the
memories are concatenated and combine the infasmatiout current, the next MPS
states, the next LPS states and rLPS estimate fpfitlea. Thus, we can obtain all
information needed to decode two bins that refexdhe same context with just one
access to the static memory.

Finally, we applied the first one detect (FOD) &gy to solve the renormalization
problem in an approach similar to [5]. The spe@pproach used to resolve the
renormalization allows it to save between 2 to 8ey, because the loop is eliminated
and the renormalization always happens in onlyaymée. To reduce the FOD delay,
the FOD is broken in two segments, one for the ilerval part and another for the
high interval part, as illustrated by Fig. 8. Thadding just one multiplexer we can
select the renormalization part between the lowlag ranges. To finish, the Range
first bit is used to choose between new and oléstegvalues for the renormalization
process.
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Fig. 8. Renormalization lock with FOD accelarates.

Considering that the regular engine is respongdrlenost of the bins produced |
the CABAD, it seems a good alternative to increttse parallelism level in thi
engine, instantiating additional regular enginegakivhile, te regular engine is i
the BADE critical path due to its long combinatibhagic depth (that include
adders, comparators, ROM and renormalization). [Tihis not advantageous to us
larger number of regular engines concatenated lsedhis would cese performanc
degradation for all other CABAD stages and the ubigput may not be satisfacto
Moreover, our analysis has shown that the Regulgines are underutilized becat
the context modeling cannot be efficient for alliations, especially r significance
map decoding.

A new interconnection approach, namely of SP_SIGM#Pregular engines we
developed to improve throughput in the regular bhadhe BADE block can recei
three context pairs from context modeling. Theseted pairs can e used ir
significance map decoding to explore the charastierbehavior of these SEs. T
first regular engine receives one context to decmoe SE_SIG, while the seco
regular engine receives two contexts, being ondettode one SE_LAS and other
decode the next SE_SIG. If the first regular engasilt was MPS then the secc
regular engine receives the second context elséhiftecontext will be delivered t
the second regular engine. The interconnectionsefgular branch ¢gines are show
in Fig. 9.

The next section analyzes the results obtained by architectures whe
processing digital video test sequences, the sdilieed in the simulation analys
discussed in section 4.



Fig. 9. Regular engines interconections inside the Regulandsr.

6 Experimental Results

The developed architectures were described in VHIDO synthesized to 0.18 um
CMOS standard cells based on the IBM cell librasing the Cadence RTL compiler.
The Modelsim tool, version 6.01a, was used durfreg dimulation and architectural

validation process. The architecture developmessgmts a new arrangement for
binary arithmetic decoders of CABAD that is ablegnerate up to 4 bins per cycle,
in the best case. The utilization of four decodinygpass engines inside the BADE
increases the hardware resources required, wholdding more efficiency compared

to the BADE architecture with just two decoder byp@ngines. Table 3 shows the
hardware synthesis results for the architecturgpgsed. It compares the solutions
with two and four decoder bypass engines in theitcture and our design.

Table 3. Distribution of bins by different SE types forcbamacroblock type.

Architectures for multi bin BADE engines
Information [6]" [12] Pr(());(;sal Differences (percent)
Gates 3671 3928 4022 9H42(4%)
Max. Frequency 191.86 190.25 187 -3,2B7%)
Max. Bins/Cycle 3(2R1B 4(4B 4(4B 0

1 Our implementation of the author’s proposal.

The results in Table 3 indicate that the increaséhe hardware costs is around
2.4% for our design and the maximum frequency demme 1.7%, both when
compared to the design proposed in [12]. A largenlmer of test-benches were



developed and run to evaluate the performaif our architecture with data extract
from the reference software during the decodingcgse of the 440 digital vide
sequences listed in Section 4. For these vide-benches we observed that the
main approaches adopted can improve the througwhen compared to previol
works presented in [6] and [12]. So, the potergaih for the four Bypass engines
BYPASS) and for the specialized context selectiondignificance map in regul:
engines (SP SIGMAP) were analyzed for each differ@soluton of the videc
sequences tested. The results ese analyses are shown in Fig. 10.
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- =
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QclF CIF D1 HD1080
M SP SIGMAP 8,75 6,01 5,06 4,97
m 4 BYPASS 4,68 4,34 4,13 3,99
Both Combined 13,43 10,35 9,19 8,96

Fig. 10.Performance analysis to four classic resolut

The data presented in Fil0 shows that the SP SIGMAP approach can imp
the throughput from 4.97% for HD1080 up to 8.75% €CIF video sequenc
resolutions. Furthermore, the 4 BYPASS approacérsfadditional gain from 3.99
up to 4.68% for HD1080 and QCIF, respectively. Pineposed design adopts bc
approaches, and when compared to [6] which doeas®heither of these techniqu
it reaches 8.96% to 13.43% throughput gains. Whempared to [12] the propos
design shows the throughput gains indic in the SP SIGMAP linef Fig. 1(.

The strategy to evaluate the performance of oudware was also employed
validate our designn these simulations we compared the outputs gésteitay out
architecture to the results generated by the JIMd€cdding module [10]. To thind,
we introduced extra code (routines) in this sofenar save the inputs and the outg
of the BADE engines for later comparison with thardware simulations. Th
strategy was used for extensive architecture védidi

Validation Proces:

In the deviopment cycle of integratecircuits, the validation process can reach
of the design time. This information indicates ttieallenge of this process. T
approach used in this work to minimize this timeswia make a hierarchical a
incremental validéon. In this approach, several validation stepsaweadeaccording
to the complexity and the abstraction level ofdiegeloped block



In the first step, the blocks of lower abstractienel were validated as standalone
block. This was accomplished by generating the rinégliate data from the
specifications given in the H.264/AVC standard. Séhetimuli were used in each of
the blocks and the verification was done by cormgatine waveforms in the simulator
to the functional definition of that block.

In the second step, the blocks were grouped aauprii their function and the
validation was done for the entire group. In thépsa software implementation of the
norm was used to produce the input stimuli andekgected output. The software
model used to generate the stimuli and the expentedits was based on the
reference software of the H.264/AVC (Surking, 2009pdifications were done in
this software to get the right data for the hardwealidation. Fig. 11 illustrates the
data extraction process for validation.

Fig. 11. Data extraction process for functional validatafrthe individual blocks and
the complete architecture.

The data extraction process for the productiompfif stimuli and the results for
comparison were done using the same standard Wdguences of the section 4.
Actually these stimuli were produced at the samme tihe data for static and dynamic
analysis were produced. This approach allowed usignificantly reduce the time
spent, once we had to process all the video segaenmdy once. It also made the data
used for analysis and validation consistent wittheather.

The second step followed the flow showed in Fig. Ih2ide a test-bench file, the
input stimuli were injected into the validating bko(Design Under Test - DUT). The
outputs of the DUT were stored for later comparisnthe expected outputs.



Fig. 12. Processo de extragdo de dados para a valida¢&ioriah dos blocos
individuais e da arquitetura completa.

8 Conclusions and Future Work

This work presented a novel dedicated hardwareitaothre for the BADE of the
CABAD block that supports the decoding of up to rfduins per cycle. The
architectural decisions were supported by a detalealysis of the bitstream flow
generated by a software video decoder. The reshtis/ that, with a hardware cost
increase of just 2.4%, we obtain 5% efficiency gainthe utilization rate of the
BADE module. The analysis of the bitstream flowwshkdhat it is possible to explore
the dynamic behavior of CABAD algorithms to devetogvel hardware solutions.

The next step in this development will be to ingggrthis BADE module inside the
CABAD top-level hardware architecture and to eviyaerformance and throughput
of the entire H.264/AVC decoding hardware with g@me digital video sequence
inputs. Given that in our simulation experiments waed a limited length for the
search area for the motion vector calculations, meeds to analyze the behavior of
the bitstream flow when the search area for magtimation is increased.
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