N
N

N

HAL

open science

Searching Massive Data Streams Using Multipattern
Regular Expressions

Jon Stewart, Joel Uckelman

» To cite this version:

Jon Stewart, Joel Uckelman. Searching Massive Data Streams Using Multipattern Regular Expres-
sions. 7th Digital Forensics (DF), Jan 2011, Orlando, FL, United States. pp.49-63, 10.1007/978-3-

642-24212-0_4 . hal-01569547

HAL Id: hal-01569547
https://inria.hal.science/hal-01569547
Submitted on 27 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01569547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 4

SEARCHING MASSIVE DATA
STREAMS USING MULTIPATTERN
REGULAR EXPRESSIONS

Jon Stewart and Joel Uckelman

Abstract This paper describes the design and implementation of lightgrep, a
multipattern regular expression search tool that efficiently searches mas-
sive data streams. lightgrep addresses several shortcomings of existing
digital forensic tools by taking advantage of recent developments in au-
tomata theory. The tool directly simulates a nondeterministic finite au-
tomaton, and incorporates a number of practical optimizations related
to searching with large pattern sets.

Keywords: Pattern matching, regular expressions, finite automata

1. Introduction

The regular-expression-based keyword search tool grep has several
important applications in digital forensics. It can be used to search
text-based documents for text fragments of interest, identify structured
artifacts such as Yahoo! Messenger chat logs and MFT entries, and re-
cover deleted files using header-footer searches.

However, while digital forensic investigations often involve searching
for hundreds or thousands of keywords and patterns, current regular ex-
pression search tools focus on searching line-oriented text files with a
single regular expression. As such, the requirements for digital foren-
sic investigations include multipattern searches with matches labeled by
pattern, graceful performance degradation as the number of patterns in-
creases, support for large binary streams and long matches, and multiple
encodings such as UTF-8, UTF-16 and legacy code pages.

A multipattern engine must identify all the occurrences of patterns in
a byte stream, even if some matches overlap. The patterns must have

50 ADVANCES IN DIGITAL FORENSICS VII

<html>
<head>
<title>Welcome!</title>
</head>
<body>
<p>Welcome to our friendly homepage on the internet!</p>

<p>Send us email!</p>
</body>
</html>

Figure 1. HTML code fragment.

full use of the regular expression syntax, and must not be limited to
fixed strings. For example, when carving an HTML document, a digital
forensic examiner might run a search for the keywords <html>.*</html>
and osama.{0,10}bin.{0,10}1aden. A correct multipattern search im-
plementation would report a hit for both keywords in the HTML code
fragment in Figure 1.

The search algorithm must degrade gracefully as the number of pat-
terns increases, so that it is always faster to search for all the patterns
in a single pass of the data than to perform multiple search passes.
Most digital forensic examiners desire competitive and predictable per-
formance. Worst-case guarantees are important as they afford digital
forensic examiners greater control over case management.

It is also necessary to efficiently search byte streams many times larger
than main memory and to track pattern matches that are hundreds of
megabytes long. In particular, the search algorithm used must mesh
nicely with input/output concerns.

Finally, because digital forensic data is unstructured, it is often neces-
sary to search for occurrences of the same patterns in different encodings.
This is especially important when searching for text in foreign languages,
where numerous encodings exist and it is unrealistic to demand that a
digital forensic examiner master all the regional encodings.

This paper discusses several regular language text search implementa-
tions and describes the implementation and key features of lightgrep, a
simple regular expression engine for digital forensics inspired by Google’s
RE2 engine [5]. Experimental results are also presented to demonstrate
the advantages of lightgrep.

2. Finite Automata

A finite automaton consists of a set of states, one of which is the initial
state, and some of which may be terminal states. Pairs of states may

Stewart & Uckelman 51

have arrows corresponding to transitions from one state to the other.
Each transition has a label corresponding to a character in the input
alphabet.

A finite automaton reads characters from an input string. The cur-
rent state of the finite automaton changes as it follows transitions with
labels that match the characters read from the input string. If a ter-
minal state is reached, the finite automaton has matched the input. If
a non-terminal state is reached that has no transition for the current
character, the finite automaton has not matched the input. A finite au-
tomaton is a deterministic finite automaton (DFA) if no state has two
or more outgoing transitions with the same label; otherwise, it is a non-
deterministic finite automaton (NFA). Every NFA is equivalent to some
regular expression, and vice versa [15].

3. Pattern Searching Approaches

Pattern searching is not a new problem, and several tools exist that
address the problem. Of these, some are forensics-specific tools (e.g.,
FTK [1] and EnCase [7]) while others are regular expression search tools
used in general computing (e.g., grep, lex and RE2 [4]).

Resourceful digital forensic examiners often use the Unix strings
command to extract ASCII strings from binary files and then perform a
search by piping the output to grep. This works for a quick search, but
using strings filters out unprintable characters and segments the data.
As a result, searches for non-ASCII text, as well as for many binary
artifacts, are not possible, and examiners are limited to fixed strings
when searching for multiple patterns. Note, however, that GNU grep
does offer good performance for single patterns.

AccessData’s FTK [1] uses the open source Boost Regex library [12].
Boost Regex offers a rich feature set and competitive performance. It
uses a backtracking algorithm, which can lead to poor performance on
certain expressions (consequently, searches are terminated when the run
time becomes quadratic). Like most regular expression libraries, how-
ever, Boost Regex does not support multipattern searches.

Guidance Software’s EnCase [7] supports multipattern searches for
regular expressions with a limited syntax, and also allows users to specify
which encodings to consider for each keyword. Performance is accept-
able with fixed-string patterns and it degrades gracefully as the number
of patterns increases. However, the search time increases significantly
as regular expression operators and character classes are used in more
patterns. Repetition is limited to a maximum of 255 bytes and EnCase
is unable to parse some complex patterns correctly. Finally, while the

52 ADVANCES IN DIGITAL FORENSICS VII

search algorithm used by EnCase is proprietary, its results are consistent
with a backtracking approach, wherein an increasing degree of alteration
in a multipattern automaton leads to performance loss.

The Unix lex utility can be used to search for multiple regular expres-
sions in a limited fashion. lex compiles all patterns into a single DFA
and reports on the longest match. The use of a DFA leads to good perfor-
mance, but it also means that 1ex cannot match overlapping occurrences
of different patterns. Most problematically, 1lex may backtrack unless
all the patterns are specified in a deterministic form, rendering its use
with non-trivial or inexpertly constructed patterns infeasible. Addition-
ally, because lex generates a C program to perform a search, examiners
have the burden of compiling the generated program and maintaining
a well-configured Unix environment. Nevertheless, good results can be
obtained with lex when it is used to extract a fixed set of common,
mutually-exclusive patterns [8].

Google’s RE2 [4] is a regular expression engine that is used by Google
Code Search. RE2 implements much, but not all, of the POSIX and
Perl regular expression syntax, guarantees linear performance with re-
spect to pattern and text size, and allows for efficient submatches of
captured groups. The RE2 syntax is strictly limited to patterns that
can be searched without backtracking to avoid the evaluation of expen-
sive patterns that might be used in denial-of-service attacks.

RE2 converts the specified pattern to an NFA and then generates
DFA states as needed, caching the DFA states for repeated use [14].
RE2 represents the NFA in terms of specialized machine instructions and
treats the current state as a thread operating on a certain instruction in
the program. NFA searches require the execution of multiple threads in a
lock-step, character-by-character examination of the text; DFA searches
utilize only a single thread. This is consistent with the O(nm) and O(n)
complexity of NFA and DFA simulations, respectively, where n is the
size of the text and m is the number of states in the automaton.

The starting and ending points of matches on captured groups are
tagged in the automata [10]. Each thread maintains a small array record-
ing the starting and ending offsets of submatches, indexed by the tran-
sition tags. In this manner, RE2 is able to record submatch boundaries
without backtracking.

As with 1ex, RE2 can approximate a multipattern search by combin-
ing patterns into alternating subpatterns of the form (£1) | (¢2) |... | (£,).
However, because the submatch array size is O(m), performance begins
to degrade substantially due to the copying of the thread state as the
number of patterns increases beyond 2,000 to 4,000. RE2 has other
properties that limit its use in digital forensics applications. When us-

Stewart & Uckelman 53

literal ¢ If the current character is ¢, increment the
instruction and suspend the current thread.
Otherwise, kill the current thread.

fork n Create a new thread at instruction n at the
current offset and increment the instruction.
jump n Go to instruction n.

match n Record a match for pattern n ending at the
current offset and increment the instruction.

halt Kill the current thread and report a match if
one exists.

Figure 2. Basic bytecode instructions.

ing a DFA search, RE2 generates a reverse DFA that it runs backwards
on the text when a match occurs in order to find the starting point of
the match. This is clearly inefficient for the very long matches required
during file carving. RE2 also assumes that the text is small enough to
fit in main memory, and it has no facility for continuing searches from
one segment of text to another.

4. lightgrep

The 1lightgrep tool, which is inspired by the design of RE2, is a
regular expression search tool for digital forensics. It directly simulates
an NFA and can search for thousands of patterns in a single pass without
exhibiting pathological performance problems. All occurrences of all
patterns are reported without having to refer backwards in the data,
allowing for a streaming input/output model. The number of patterns
is limited only by the amount of system RAM and matches are reported
regardless of their size.

Correct multipattern searching is achieved by the application of tagged
transitions to pattern matches, not to submatches. Instead of using an
array of submatch positions, each state has scalar values for the starting
offset of the match, ending offset and value of the last tagged transition.
Transitions are tagged to match states with the corresponding index
numbers of the patterns. While the worst-case complexity of NFA search
is O(nm), several practical optimizations are incorporated in lightgrep
to obtain reasonable performance with large automata.

4.1 Implementation

Rather than using an NFA directly, lightgrep compiles patterns into
a bytecode program using the instructions in Figure 2. Given a list of
patterns to match and a stream of input, the bytecode program is then

54 ADVANCES IN DIGITAL FORENSICS VII

1: for p:= 0 to end of stream do

2: create a new thread (0, p, 0, @)

3: for all live threads t := (s,1,j, k) do
4: repeat

5: execute instruction s

6: until ¢ dies or is suspended

7 end for

8: end for

9: for all live threads ¢ := (s,4,7,k) do
10: repeat

11: execute instruction s

12: until ¢ dies

13: end for

Figure 3. Bytecode interpreter.

executed by the bytecode interpreter (Figure 3) to produce a list of
matches.

Each thread is a tuple (s, 1, j, k) where s is the current instruction, i is
the start (inclusive) of the match, j is the end (exclusive) of the match,
and k is the index of the matched pattern. When a thread is created, it
is initialized to (0, p,(,) where p is the current position in the stream.
Note that) # 0: A zero (0) for the start or end of a match indicates
that a match starts or ends at offset 0; a null ({)) indicates no match.

literal ‘a’
fork 6
literal ‘b’
literal ‘4’
match 0
jump 2
literal ‘b’
literal ¢
match 1

halt

© 00 ~NO O WN - O

Figure 4. Bytecode matching a(bd)+ and abc.

To clarify how lightgrep works, consider the stream gqabcabdbd and
a search request for the patterns a(bd)+ and abc. Figure 4 shows the
bytecode produced for these patterns. For comparison, the NFA corre-
sponding to these patterns is shown in Figure 5.

To illustrate the procedure, we step through the execution of the
bytecode as the stream is advanced one character at a time. The leftmost
column lists the thread ID, the second column specifies the thread and
the third column provides an explanation of the step.

Stewart & Uckelman

tag

Figure 5. NFA matching a(bd)+ and abc.

1: Qqabcabdbd

0
0

(0,0,0,0) thread 0 created
(0,0,0,0) 1literal ‘a’ fails; thread dies

s Hy

2: gabcabdbd

(0,1,0,0) thread 1 created
(0,1,0,0) 1literal ‘a’ succeeds
1,1,0,0

(1,1,0,0) advance instruction and suspend

3: qgabcabdbd

W W~ = W NN

thread 2 created

literal ‘a’ fails; thread dies
fork 6 creates thread 3

thread 3 created

advance instruction

literal ‘b’ succeeds

advance instruction and suspend
literal ‘b’ succeeds

advance instruction and suspend

oW N O OO
i ani e el el el NI)
SSSS@SSSS
S e oS eSS =

o~~~ o~~~ o~~~
oo oo oo

4: gabcabdbd

oW R A

thread 4 created

literal ‘a’ fails; thread dies
literal ‘4’ fails; thread dies
literal ‘c’ succeeds

advance instruction and suspend

N woo
=W W
SS@SS
S eSS =

o~ o~~~ o~
oo

95

56 ADVANCES IN DIGITAL FORENSICS VII

5: qabcqabdbd

5 (0,4,0,0) thread 5 created

5 (0,4,0,0) 1literal ‘a’ fails; thread dies

3 (8,1,0,0) match 1

3 (8,1,4,1) set match pattern and end offset

3 (9,1,4,1) advance instruction

3 (9,1,4,1) halt; report match on pattern 1 at [1,4); thread dies

6 (0,5,0,0) thread 6 created
6 (0,5,0,0) 1literal ‘a’ succeeds
6 (1,5,0,0) advance instruction and suspend

From here on, we do not mention the creation of threads that die imme-
diately due to a failure to match the current character.

7: qabcgqabdbd

6 (1,5,0,0) fork 6 creates thread 7

7 (6,5,0,0) thread 7 created

6 (2,5,0,0) advance instruction

6 (2,5,0,0) 1literal ‘b’ succeeds

6 (3,5,0,0) advance instruction and suspend

7 (6,5,0,0) 1literal ‘b’ succeeds

7 (7,5,0,0) advance instruction and suspend
8: gabcgabdbd

6 (3,5,0,0) 1literal ‘d’ succeeds

6 (4,5,0,0) advance instruction and suspend

7 (7,5,0,0) 1literal ‘c’ fails; thread dies

9: gabcgabdbd

match O

set match pattern and end offset
advance instruction

jump 2

goto instruction 2

literal ‘b’ succeeds

advance instruction and suspend

NSSICICITES
CUOT O O T O i
0 00 0 0 W0 0=
cococococos

(e le)Ier oo NN
P N
R

10: gabcgabdbd

6 <)

3,5,8,0) 1literal ‘d’ succeeds
6 (4,5,8,0) advance instruction and suspend

Stewart & Uckelman 57

11: Having reached the end of the stream, the remaining threads run until they

die:
6 (4,5,8,0) match 0
6 (4,5,10,0) set match pattern and end offset
6 (5,5,10,0) advance instruction
6 (55,10,0) jump 2
6 (2,5,10,0) goto instruction 2
6 (2,5,10,0) 1literal ‘b’ fails; report match of pattern 0 at [4,9);

thread dies

The execution of this bytecode reports a match for abc at [1,4) and
a match for a(bd)+ at [5, 10).

4.2 Optimizations

This section describes the optimizations implemented in lightgrep.

Minimization. Minimizing thread creation from unnecessary alterna-
tion is the key to improving performance in an NFA simulation. Rather
than treating each pattern as a separate branch of the NFA, patterns
are formed into a trie by incrementally merging them into the NFA as
they are parsed. (A trie, also known as a prefix tree, is a tree whose root
corresponds to the empty string, with every other node extending the
string of its parent by one character. A trie is a type of acyclic DFA.)
Merging must take into account not only the criteria of the transitions,
but also the sets of source and target states.

To facilitate minimization, we use the Glushkov NFA form [6] instead
of the Thompson form [16]. Constructing a Glushkov NFA is computa-
tionally more expensive, but it has only m + 1 states, while a Thompson
NFA has O(2m) states. Additionally, a Glushkov NFA is free of no
epsilon transitions, simplifying both the compilation process and the
resulting bytecode.

Jump Tables for States with High Branching. Typically, one
thread is forked to handle each successor of a given state. Some NFA
states may have a large number of successors, making the creation of new
threads costly. For example, the first state often has a large number &
of outbound transitions when many patterns are specified. Therefore,
every character read from the input stream causes k new threads to be
created, almost all of which die immediately due to the lack of a match.
Determining which threads will survive and spawning only these threads
would be a significant practical improvement.

To accomplish this, we use the jumptable instruction. This instruc-
tion sits at the head of a list of 256 consecutive instructions, one for each
possible value of the current byte. When the jumptable instruction is

58 ADVANCES IN DIGITAL FORENSICS VII

reached with byte b, execution jumps ahead b+1 instructions and contin-
ues from there. The instruction offset b+ 1 from jumptable is generally
a jump in the case of a match (in order to get out of the jump table), or
a halt otherwise. If more than one transition is possible for byte b, then
a list of appropriate fork and jump instructions is appended to the table
and the jump instruction for byte b targets this table. In this manner,
only the threads that succeed are spawned. The compiler takes care to
specify jumps to states just beyond their literal instructions, ensuring
that b is not evaluated twice. A sibling instruction, jumptablerange,
used when the difference between the minimum and maximum accepted
byte values is small, operates by checking that the byte value is in range
and only then indexes into the table; this allows the jump table itself to
be the size of the range, rather than the full 256 bytes.

Reduced State Synchronization. A typical simulation of an NFA
uses a bit vector (containing a bit for each state) to track which states
are visited for the current character in the stream in order to avoid du-
plicating work [2]. The number of NFA states depends on the combined
length of the search patterns used; therefore, a search using a large num-
ber of patterns (even fixed-string patterns) forces this bit vector to be
quite long. Either the bit vector must be cleared after each advance of
the stream, or a complex checking process must be performed after each
transition to update the bit vector.

Note that it is impossible for two threads to arrive at the same state
at the same character position unless the state has multiple transitions
leading to it. Therefore, only these states with multiple predecessors
require bits in the current state vector; the bits for the other states are
wasted.

The lightgrep implementation presented above makes no provision
for such deduplication. In order to handle this, lightgrep uses the
chkhalt instruction, which associates an index with each state having
multiple incoming transitions. This instruction is inserted before the
outbound transition instructions associated with a state requiring syn-
chronization. The index associated with the state is specified as an
operand to chkhalt, which uses it to test the corresponding value in a
bit vector. The bit is set if it is currently unset, and execution proceeds.
If the bit is already set, then the thread dies. In this manner, the size of
the bit vector is minimized and safe transitions, which occur frequently
in practice, are left unguarded.

Complex Instruction Set. As noted in the discussion of jumptable
and chkhalt, it is easy to introduce new instructions to handle common

Stewart & Uckelman 59

cases. For example, either has two operands and continues execution
if the current byte matches either operand. Similarly, range has two
operands and continues if the current byte has a value that falls within
their range, inclusively. More complex character classes can be handled
with bitvector, an instruction followed by 256 bits, each bit set to one
if the corresponding byte value is permitted. If several states have the
same source and target states, their transitions can be collapsed into a
single bitvector instruction. In general, it is worthwhile to introduce
a new instruction if it can eliminate sources of alternation.

Compilation. The lightgrep tool uses a hybrid breadth-first/depth-
first search scheme to lay out the generated instructions. Instructions for
states are first laid out in breadth-first order of discovery; the discovery
switches to a depth-first search when a parent state has a single transi-
tion. This hybrid scheme has two advantages. First, subsequent states
are generally close to their parent states due to breadth-first discovery.
Second, the total number of instructions used can be reduced signif-
icantly in linear sequences of states since jump and fork instructions
need not appear between them.

4.3 Additional Usability Features

This section describes additional usability features implemented in
lightgrep.

Greedy vs. Non-Greedy Matching. As discussed in [4], it is possi-
ble to introduce non-greedy repetition operators such as *7 that result
in the shortest possible matches instead of the longest. Thread priority
for alternations and repetitions can be controlled by executing forked
threads before continuing execution on the parent thread and by careful
ordering of fork instructions during compilation.

Non-greedy matching can be quite useful in digital forensics. Our
prior example of the pattern <html>.*</html> is not appropriate for
carving HTML fragments from unallocated space in a file system. The
pattern matches the first fragment, but a thread will continue trying to
match beyond the fragment, eventually producing a match at the end
of the last such fragment (if it exists) and reporting one long match. In
contrast, <html>.*7</html> generates one match for each fragment.

Positional Assertions. The vi text editor offers users the ability to
specify positional assertions in patterns. For example, a pattern can
assert that it must match the pattern on a certain line, in a certain
column. Positional assertions can have useful applications in searching

60 ADVANCES IN DIGITAL FORENSICS VII

binary data for forensic applications. A file format may have an optional
record that can be identified with a pattern, but that is known to occur
only at a given offset. Further, file carving may be limited to data that is
sector-aligned. To accomplish this, we introduce the syntax (7i@regex)
and (7i%j@regex), where i is either an absolute or modulo byte offset
and j is a divisor. Thus, (70%512@)PK would match sector-aligned ZIP
archive headers.

Multiple Encodings. Many regular expression libraries with Unicode
support rely on data to be decoded to Unicode characters before con-
sideration by the search routine, on the assumption that the data to be
searched is stored in a single encoding. This is not a valid assumption
in digital forensics—when searching unstructured data, encodings may
change capriciously from ASCII to UTF-16 to UTF-8 to a legacy code
page. lightgrep is explicitly byte-oriented. In order to search for al-
ternate encodings of a pattern, its various binary representations must
be generated as separate patterns in the NFA. Matches can then be re-
solved back to the user-specified term and appropriate encoding using a
table.

lightgrep can search for ASCII-specified patterns as ASCII and as
UTF-16. Full support for various encodings is under active develop-
ment; the open source ICU library [9] is being used to eliminate plat-
form dependencies. In addition to specifying the particular encodings to
be used for a given search term, users may choose an automatic mode,
where the characters of a keyword are considered as Unicode code points.
All unique binary representations are then generated from the list of
supported ICU encodings, which will aid searches for foreign-language
keywords.

5. Experimental Results

In order to benchmark lightgrep, we created a list of 50 regular
expressions suitable for use in investigations, with moderately aggressive
use of regular expression operators. Some of the terms are for text,
others for artifacts and files. Testing used increasing subsets of the
terms, from five terms to 50 in five-term increments. Of the search
algorithms mentioned in Section 3, only EnCase has enough features in
common with 1ightgrep for a head-to-head performance comparison to
be meaningful. Therefore, we compared only EnCase and 1lightgrep in
our experiments.

With both EnCase and lightgrep, the tests ran each group of key-
words against a 32 GB Windows XP dd evidence file. The file systems
in the evidence file were not parsed. The workstation used had two

Stewart & Uckelman 61

45000
| _BEncase

40000
Dlightgrep
35000 1— [
H shalsum B

8 30000 1 —
c

8 25000 —
Q

2 20000 = —
[}]

E 15000 L
-

10000 - e

5000 { —
0 +5 T T = L= = e -Lu]

5 10 15 20 25 30 35 40 45 50
Keywords

Figure 6. Wall-clock time for EnCase and lightgrep.

Intel Xeon 5160 3 GHz dual-core processors with 4 GB RAM and a
7,200 rpm SATA2 hard drive. Figure 6 shows the wall-clock execution
times. lightgrep dramatically outperformed EnCase on the test data
— by more than a factor of ten in all cases.

As a further benchmark, we compared lightgrep’s completion time
with the time required to hash the evidence file with SHA-1 using the
shalsum command. SHA-1 hashing reads every byte of the input and
is input/output-bound, so the SHA-1 timings provide a lower bound for
search performance. The results show that lightgrep comes very close
to matching hash performance with small sets of keywords.

Additionally, a lightgrep search was conducted with 114,743 fixed
strings from an English word list (not shown in Figure 6). This search
completed in 523 seconds, just 50 seconds more than the time needed to
hash the evidence. Because fixed strings collapse into a DFA for match-
ing (but not searching), this indicates that performance improvements

with complex patterns can be achieved by further determinization of the
NFA.

6. Conclusions

Tagged NFAs are easily applied to the multipattern problem and op-
timizations can keep the observed performance below the worst-case
O(nm) running time as the automata sizes increase. lightgrep uses
these mechanisms to provide digital forensic examiners with a sorely-

62 ADVANCES IN DIGITAL FORENSICS VII

needed capability, allowing evidence to be searched for large keyword
sets in a single pass.

The 1lightgrep tool is currently undergoing robust acceptance testing
to ensure confidence in its results and support for generating alternative
patterns for matching in multiple encodings. An obvious optimization
is to multiplex the execution of virtual machine threads onto system
threads, exploiting multicore processors.

The malleability of the bytecode representation for automaton match-
ing enables it to be used with newer matching algorithms that can
skip bytes in the text based on precomputed shift tables. For example,
Watson [17] describes a sublinear multipattern matching algorithm that
combines a Commentz-Walter fixed-string search for prefixes of matches
with full automaton evaluation for the complete pattern. Also, pat-
tern matching research related to network packet inspection and rule
matching in intrusion detection systems can be applied to digital me-
dia searching. An example is the work of Becchi and Crowley [3] on
optimizations related to counted repetitions in patterns.

The current version of lightgrep does not search for near-matches.
Near-matching can be performed using Wu and Manber’s algorithm [18],
which is implemented in the agrep and TRE [11] search utilities. Al-
ternatively, fuzzy matching functionality may be implemented using a
bit-parallel algorithm as in nrgrep.

References

[1] AccessData, Forensic Toolkit, Lindon, Utah (www.accessdata.com
/forensictoolkit.html).

[2] A. Aho, M. Lam, R. Sethi and J. Ullman, Compilers: Principles,
Techniques and Tools, Addison-Wesley, Boston, Massachusetts,
2007.

[3] M. Becchi and P. Crowley, Extending finite automata to efficiently
match Perl-compatible regular expressions, Proceedings of the In-
ternational Conference on Emerging Networking Experiments and
Technologies, 2008.

[4] R. Cox, Regular expression matching: The virtual machine ap-
proach (swtch.com/~rsc/regexp/regexp2.html), 2009.

[5] R. Cox, RE2: An efficient, principled regular expression library
(code.google.com/p/re2), 2010.

[6] V. Glushkov, The abstract theory of automata, Russian Mathemat-
ical Surveys, vol. 16(5), pp. 1-53, 1961.

Stewart & Uckelman 63

[7]
8]
[9]

[10]

[11]
[12]
[13]

[14]

Guidance Software, EnCase, Pasadena, California (www.guidance
software.com).

S. Garfinkel, Forensic feature extraction and cross-drive analysis,
Digital Investigation, vol. 3(S), pp. 71-81, 2006.

International Business Machines, ICU — International Components
for Unicode, Armonk, New York (icu-project.org), 2010.

V. Laurikari, NFAs with tagged transitions, their conversion to de-
terministic automata and applications to regular expressions, Pro-
ceedings of the Seventh International Symposium on String Process-
ing and Information Retrieval, pp. 181-187, 2000.

V. Laurikari, TRE — The free and portable approximate regex
matching library (laurikari.net/tre), 2010.

J. Maddock, Boost.Regex (www.boost.org/doc/libs/1.43_0/libs/reg
ex/doc/html/index.html), 2009.

G. Navarro, NR-grep: A fast and flexible pattern-matching tool,
Software Practice and Experience, vol. 31(13), pp. 1265-1312, 2001.

G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings:
Practical On-Line Search Algorithms for Texts and Biological Se-
quences, Cambridge University Press, Cambridge, United Kingdom,
2007.

M. Sipser, Introduction to the Theory of Computation, PWS Pub-
lishing, Boston, Massachusetts, 1997.

K. Thompson, Regular expression search algorithm, Communica-
tions of the ACM, vol. 11(6), pp. 419-422, 1968.

B. Watson, A new regular grammar pattern matching algorithm,
Proceedings of the Fourth Annual European Symposium on Algo-
rithms, pp. 364-377, 1996.

S. Wu and U. Manber, Agrep — A fast approximate pattern-
matching tool, Proceedings of the USENIX Winter Technical Con-
ference, pp. 1563-162, 1992.

