N

N
N

HAL

open science

Fast Content-Based File Type Identification
Irfan Ahmed, Kyung-Suk Lhee, Hyun-Jung Shin, Man-Pyo Hong

» To cite this version:

Irfan Ahmed, Kyung-Suk Lhee, Hyun-Jung Shin, Man-Pyo Hong. Fast Content-Based File Type Iden-
tification. 7th Digital Forensics (DF), Jan 2011, Orlando, FL, United States. pp.65-75, 10.1007/978-

3-642-24212-0_5 . hal-01569553

HAL Id: hal-01569553
https://inria.hal.science/hal-01569553
Submitted on 27 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01569553
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 5

FAST CONTENT-BASED
FILE TYPE IDENTIFICATION

Irfan Ahmed, Kyung-Suk Lhee, Hyun-Jung Shin and Man-Pyo Hong

Abstract  Digital forensic examiners often need to identify the type of a file or
file fragment based on the content of the file. Content-based file type
identification schemes typically use a byte frequency distribution with
statistical machine learning to classify file types. Most algorithms ana-
lyze the entire file content to obtain the byte frequency distribution, a
technique that is inefficient and time consuming. This paper proposes
two techniques for reducing the classification time. The first technique
selects a subset of features based on the frequency of occurrence. The
second speeds up classification by randomly sampling file blocks. Ex-
perimental results demonstrate that up to a fifteen-fold reduction in
computational time can be achieved with limited impact on accuracy.

Keywords: File type identification, file content classification, byte frequency

1. Introduction

The identification of file types (e.g., ASP, JPG and EXE) is an im-
portant, but non-trivial, task that is performed to recover deleted file
fragments during file carving [3, 12]. File carving searches a drive im-
age to locate and recover deleted and fragmented files. Since the file
extension and magic numbers can easily be changed, file type identifica-
tion must only rely on the file contents. Existing file type identification
approaches generate features from the byte frequency distribution of a
file and use these features for classification [5, 9]. The problem is that
this process requires considerable time and memory resources because it
scales with file size and the number of n-gram sequences.

This paper presents two techniques that reduce the classification time.
The first is a feature selection technique that selects a percentage of the
most frequent byte patterns in each file type; the byte patterns for each
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file type are then merged using a union or intersection operator. The
second technique compares a sampling of the initial contiguous bytes [9]
with samplings of several 100-byte blocks from the file under test.

Experimental tests of the techniques involve six classification algo-
rithms: artificial neural network, linear discriminant analysis, k-means
algorithm, k-nearest neighbor algorithm, decision tree algorithm and
support vector machine. The results of comparing ten file types (ASP,
DOC, EXE, GIF, HTML, JPG, MP3, PDF, TXT and XLS) show that
the k-nearest neighbor algorithm achieves the highest accuracy of about
90% using only 40% of 1-gram byte patterns.

2. Related Work

Several algorithms have been developed to perform content-based file
type identification using the byte frequency distribution. The byte fre-
quency analysis algorithm [10] averages the byte frequency distribution
to generate a fingerprint for each file type. Next, the differences between
the same byte in different files are summed and the cross-correlation be-
tween all byte pairs is computed. The byte patterns of the file headers
and trailers that appear in fixed locations at the beginning and end of
a file are also compared. The file type is identified based on these three
computed fingerprints.

Li, et al. [9] have used n-gram analysis to calculate the byte frequency
distribution of a file and build three file type models (fileprints): (i)
single centroid (one model of each file type); (ii) multi-centroid (multiple
models of each file type); and (iii) exemplar files (set of files of each file
type) as centroid. The single and multi-centroid models compute the
mean and standard deviation of the byte frequency distribution of the
files of a given file type; the Mahalanobis distance is used to identify
the file type with the closest model. In the exemplar file model, the
byte frequency distributions of exemplar files are compared with that
of the given file and the Manhattan distance is used to identify the
closest file type. This technique cannot identify files that have similar
byte frequency distributions such as Microsoft Office files (Word and
Excel); instead, it treats them as a single group or abstract file type.
Martin and Nahid [7, 8] have extended the single centroid model [9]
using quadratic and 1-norm distance metrics to compare the centroid
with the byte frequency distribution of a given file.

Veenman [14] has used three features: byte frequency distribution,
entropy derived from the byte frequency and Kolmogorov complexity
that exploits the substring order with linear discriminant analysis; this
technique reportedly yields an overall accuracy of 45%. Calhoun and
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Coles [2] have extended Veenman’s work using additional features such
as ASCII frequency, entropy and other statistics. Their extension is
based on the assumption that files of the same type have longer common
substrings than those of different types.

Harris [5] has used neural networks to identify file types. Files are
divided into 512-byte blocks with only the first ten blocks being used
for file type identification. Two features are obtained from each block:
raw filtering and character code frequency. Raw filtering is useful for
files whose byte patterns occur at regular intervals, while character code
frequency is useful for files that have irregular occurrences of byte pat-
terns. Tests using only image files (BMP, GIF, JPG, PNG and TIFF)
report detection rates ranging from 1% (GIF) to 50% (TIFF) with raw
filtering and rates ranging from 0% (GIF) to 60% (TIFF) with character
code frequency.

Amirani, et al. [1] have employed a hierarchical feature extraction
method to exploit the byte frequency distribution of files. They utilize
principal component analysis and an auto-associative neural network to
reduce the number of 256-byte pattern features. After feature extraction
is performed, a multilayer perceptron with three layers is used for file
type detection. Tests on DOC, EXE, GIF, HTML, JPG and PDF files
report an accuracy of 98.33%.

3. Proposed Techniques

Two techniques are proposed for fast file type identification: feature
selection and content sampling. Feature selection reduces the number
of features used during classification and reduces the classification time.
Content sampling uses small blocks of the file instead of the entire file to
calculate the byte frequency; this reduces the feature calculation time.

Feature selection assumes that a few of the most frequently occurring
byte patterns are sufficient to represent the file type. Since each file
type has a different set of high-frequency byte patterns, classification
merges the sets of most frequently occurring byte patterns. Merging
uses the union and intersection operations. Union combines the feature
sets of all the file types while intersection extracts the common set of
features among the file types. The result of the union operation may
include low-frequency byte patterns for certain file types. In contrast,
the intersection operation guarantees that only the highest-frequency
byte patterns are included.

Obtaining the byte frequency distribution of an entire file can be ex-
tremely time consuming. However, partial file contents may be sufficient
to generate a representative byte frequency distribution of the file type.



68 ADVANCES IN DIGITAL FORENSICS VII

The file content is sampled to reduce the time taken to obtain the byte
frequency distribution.

The sampling effectiveness is evaluated in two ways: sampling ini-
tial contiguous bytes and sampling several 100-byte blocks at random
locations in a file. The first method is faster, but the data obtained
is location dependent and may be biased. The second method gathers
location-independent data, but is slower because the files are accessed
sequentially. Intuitively, the second method (random sampling) should
generate a better byte frequency distribution because the range of sam-
pling covers the entire file. Thus, it exhibits higher classification accu-
racy for a given sample size.

Random sampling is novel in the context of file type identification.
However, initial contiguous byte sampling has also been used by Harris
[5] and by Li, et al. [9]. Harris used a sample size of 512 bytes. Li,
et al. employed several sample sizes up to a maximum of 1,000 bytes,
and showed that the classification accuracy decreases with an increase
in sample size. Optimum accuracy was obtained when using the initial
twenty bytes of a file.

4. Classification Algorithms

Experimental tests of the two proposed techniques involve six classi-
fication algorithms: artificial neural network, linear discriminant analy-
sis, k-means algorithm, k-nearest neighbor algorithm, decision tree al-
gorithm and support vector machine.

Artificial neural networks [13] are nonlinear classifiers inspired by the
manner in which biological nervous systems process information. The
artificial neural network used in the experiments incorporated three lay-
ers with 256 input nodes and six hidden nodes. The 256 input nodes
represented the byte frequency patterns. The number of hidden nodes
was set to six because no improvement in the classification accuracy was
obtained for larger numbers of nodes. A hyperbolic tangent activation
function was used; the learning rate was set to 0.1 as in [4].

Linear discriminant analysis [11] finds linear combinations of byte
patterns by deriving a discriminant function for each file type. The
discriminant score produced as the output of the linear discriminant
function was used to identify the file type.

The k-means algorithm [13] computes a centroid for each file type
by averaging the byte frequency distribution of the sample files corre-
sponding to each file type. In our experiments, the Mahalanobis distance
between the test file and the centroids of all the file types was computed
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by the k-means algorithms. The file type corresponding to the closest
centroid was considered to be the file type of the test file.

The k-nearest neighbor algorithm [13] employs a lazy learning strat-
egy that stores and compares every sample file against a test file. The
Manhattan distance of the test file from all other sample files was calcu-
lated, and the majority file type among the k nearest files was considered
to be the file type of the test file. The classification accuracy was cal-
culated for values of k from one to the number of sample files, and the
value chosen for k corresponded to the highest classification accuracy.

A decision tree algorithm [13] maps the byte frequency patterns into
a tree structure that reflects the file types. Each node in the tree cor-
responds to a byte pattern that best splits the training files into their
file types. In the prediction phase, a test file traverses the tree from the
root to the leaf nodes. The file type corresponding to the leaf node of
the tree was designated as the file type of the test file.

A support vector machine (SVM) [13] is a linear machine operating in
a high-dimensional nonlinear feature space that separates two classes by
constructing a hyperplane with a maximal margin between the classes.
In cases when the classes are not linearly separable in the original input
space, the original input space is transformed into a high-dimensional
feature space.

Given a training set with instances and class-label pairs (x;, y;) where
i =1,2,...,m and x; € R", y; ¢ {1,—1}", the function ¢ maps the
training vector x; to a higher-dimensional space using a kernel function
to find a linear separating hyperplane with a maximal margin. There
are four basic kernel functions (linear, polynomial, radial basis function
and sigmoid) and three SVM types (C-SVM, nu-SVM and one class
SVM). Our preliminary tests determined that the best file classification
performance was obtained using a nu-SVM with a linear kernel.

Since the SVM is a binary classifier, the one-versus-one approach [6]
is used for multiclass classification. Thus, r(r — 1)/2 binary classifiers
must be constructed for r file types. Each binary classifier was trained
using data corresponding to two file types. The final classification was
determined based on the majority vote by the binary classifiers.

5. Experimental Results

The experimental tests used a data set comprising 500 files of each of
ten file types (ASP, DOC, EXE, GIF, HTML, JPG, MP3, PDF, TXT
and XLS) (Table 1). Classifier training used 60% of the data set while
testing used the remaining 40% of the data set. The files came from
different sources to eliminate potential bias. The executable files were
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Table 1. Data set used in the experiments.

File Number Average Minimum Maximum
Type of Files Size (KB) Size (B) Size (KB)
ASP 500 3.52 49 37
DOC 500 306.44 219 7,255
EXE 500 522.71 882 35,777
GIF 500 3.24 64 762
HTML 500 11.59 117 573
JPG 500 1,208.27 21,815 7,267
MP3 500 6,027.76 235 30,243
PDF 500 1,501.12 219 32,592
TXT 500 269.03 16 69,677
XLS 500 215.98 80 9,892

obtained from the bin and system32 folders of Linux and Windows
XP machines. The other files were collected from the Internet using a
general search based on each file type. The random collection of files
can be considered to represent an unbiased and representative sample of
the ten file types.

5.1 Feature Selection

The feature selection tests sought to identify the merging operator, the
percentage of features and the classifier with the best performance. The
tests were designed to compare the six classifiers with different percent-
ages of frequently occurring byte patterns and the union and intersection
operators.
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Figure 1. Average classification accuracy.

Figure 1 shows the average classification accuracy of each of the six
classifiers for various percentages of the most frequently occurring byte
patterns and the union and intersection operators. The union opera-
tor was more consistent with respect to accuracy than the intersection
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Figure 2. Classification accuracy using initial contiguous bytes as sampled content.

operator as the number of frequently occurring byte patterns increased.
This occurs because union, unlike intersection, retains all the most fre-
quently occurring byte patterns of the various file types. Additionally,
as shown in Figure 1, the k-nearest neighbor (kKNN) algorithm, on the
average, yields the most accurate classifier of the six tested algorithms.
In particular, it exhibits 90% accuracy using 40% of the features and
the union operation. Using the kNN algorithm with the intersection
operation further reduces the number of features without compromising
the accuracy (88.45% accuracy using 20% of the features).

The results also show that no single classifier consistently exhibits the
best performance. Many classifiers provide an accuracy of about 90%
using 40% of the features, and this level of accuracy remains almost the
same as the number of features is increased. This underscores the fact
that the computational effort involved in classification can be reduced
by using the most frequently occurring byte patterns for classification.

5.2 Content Sampling

This section focuses only on the results obtained with the kNN al-
gorithm because it exhibited the best performance in our experiments
involving feature selection.

Figures 2 and 3 show the classification accuracy for the ten file types
that are divided into three groups: binary, text and binary text contain-
ing binary, ASCII or printable characters, and compound files, respec-
tively. The arrows in the figures show the possible threshold values.

Figure 2 shows the results obtained for initial contiguous byte sam-
pling. Note that the classification accuracy of file types shows an extreme
deviation (either 0% or 100%) when the initial two bytes of a file are
used. In general, the first two bytes of a file are more likely to match
a signature because, in the case of binary files such as EXE and JPG,
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Figure 3. Classification accuracy using randomly-sampled 100-byte blocks.

these bytes contain magic numbers. For instance, JPG files begin with
FF D8 (GIF files begin with GIF89a or GIF87a). Although text files do
not have magic numbers, they often start with keywords. For example,
HTML files usually start with <html> and <!DOCTYPE.

In short, the first two bytes of file types have certain patterns. If the
patterns occur frequently and are included in the subset of 40% of byte
patterns, a classifier either identifies them with 100% accuracy or fails
to identify them. Note also that the accuracy improves with an increase
in the initial contiguous bytes and becomes reasonably stable beyond
a certain point. The maximum threshold value of the contiguous bytes
found for the given file types is 400 KB. This is significantly smaller than
the average size of the files in the data set. For example, the maximum
threshold values for JPG, PDF and MP3 files are, respectively, three,
four and fifteen times smaller than their original sizes.

Figure 3 shows the results obtained for random sampling of up to 8,000
100-byte blocks. Initial contiguous byte sampling and random sampling
have similar classification accuracy for binary and text files. However,
unlike initial contiguous byte sampling, random sampling fails to achieve
a consistent accuracy in identifying compound files when the number
of blocks increases. Thus, it is difficult to obtain a threshold value
for the sample size for compound files. We conjecture that, because a
compound file has many embedded objects, random sampling generates
different byte frequency distributions depending on the objects that are
taken into account. The comparison of the threshold values obtained by
the two sampling techniques shows that random sampling requires fewer
bytes to achieve the optimal and stable accuracy in classifying binary
and text files. This also verifies that random sampling is effective for
large files such as JPG and MP3 for which relatively small samples can
generate the representative byte frequency distribution.
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Figure 4. Time reduction using feature selection with a kNN classifier.

5.3 Time Reduction

The total time taken to identify a file type includes the time taken to
obtain the byte frequency distribution of the file and the time taken by
the classification algorithm to classify the file. The experimental tests
undertaken to measure the time savings used a Windows XP machine
with 2.7 GHz Intel CPU and 2 GB RAM.

Figure 4 illustrates the time savings that can be achieved in the classi-
fication process (with the kNN algorithm) by using the feature selection
technique. Fach algorithm has a different processing time depending
on whether it uses lazy or eager learning, the number of attributes and
the technique used for comparison with the representative model. Since
kNN is a lazy learning algorithm and classification requires computa-
tions involving the test sample and all learned samples, the algorithm
has high computational complexity with regard to classification. This
makes the kNN algorithm a representative upper bound for the classi-
fication computational time. Figure 4 shows that the kNN algorithm
with the Manhattan distance achieves a 50% time reduction using 40%
of the byte patterns.

Figure 5 shows the computational time savings obtained when the
byte frequency distribution is calculated using content sampling. Al-
though the results were produced using 1-grams, a higher n-gram would
yield similar results because the number of input/output operations is
the same regardless of the size of n.
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Figure 5. Time reduction using initial contiguous and 100-byte block sampling.

6. Conclusions

The two techniques described in this paper are designed to speed up
file type identification. The first technique performs feature selection
and only uses the most frequently occurring byte patterns for classifica-
tion. The second technique uses random samples of the file being tested
instead of the entire file to calculate the byte pattern distribution. Ex-
perimental tests involving six classification algorithms demonstrate that
the ENN algorithm has the best file identification performance. In the
best case, the proposed feature selection and random sampling tech-
niques can produce a fifteen-fold reduction in computational time.

The proposed techniques yield promising results with 1-gram features.
Higher accuracy can be achieved by increasing the n-gram size to obtain
better features for classification. Using a higher n-gram can also result
in significant time savings.
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