Longitudinal Analysis using Personalised 3D Cardiac Models with Population-Based Priors: Application to Paediatric Cardiomyopathies

Abstract : Personalised 3D modelling of the heart is of increasing interest in order to better characterise pathologies and predict evolution. The personalisation consists in estimating the parameter values of an electromechanical model in order to reproduce the observed cardiac motion. However, the number of parameters in these models can be high and their estimation may not be unique. This variability can be an obstacle to further analyse the estimated parameters and for their clinical interpretation. In this paper we present a method to perform consistent estimations of electromechanical parameters with prior probabilities on the estimated values, which we apply on a large database of 84 different heartbeats. We show that the use of priors reduces considerably the variance in the estimated parameters, enabling better conditioning of the parameters for further analysis of the cardiac function. This is demonstrated by the application to longitudinal data of paediatric cardiomyopathies, where the estimated parameters provide additional information on the pathology and its evolution.
Type de document :
Communication dans un congrès
Medical Image Computing and Computer Assisted Intervention (MICCAI), Sep 2017, Québec City, Canada. Springer International Publishing, pp.350-358, 2017, Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017. 〈http://www.miccai2017.org/〉. 〈10.1007/978-3-319-66185-8_40〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01569735
Contributeur : Roch Mollero <>
Soumis le : jeudi 27 juillet 2017 - 14:43:25
Dernière modification le : dimanche 3 décembre 2017 - 09:24:02

Fichier

paper729.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Roch Molléro, Hervé Delingette, Manasi Datar, Tobias Heimann, Jakob Hauser, et al.. Longitudinal Analysis using Personalised 3D Cardiac Models with Population-Based Priors: Application to Paediatric Cardiomyopathies. Medical Image Computing and Computer Assisted Intervention (MICCAI), Sep 2017, Québec City, Canada. Springer International Publishing, pp.350-358, 2017, Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017. 〈http://www.miccai2017.org/〉. 〈10.1007/978-3-319-66185-8_40〉. 〈hal-01569735〉

Partager

Métriques

Consultations de la notice

171

Téléchargements de fichiers

58