Colouring graphs with constraints on connectivity

Abstract : A graph G has maximal local edge-connectivity k if the maximum number of edge-disjoint paths between every pair of distinct vertices x and y is at most k. We prove Brooks-type theorems for k-connected graphs with maximal local edge-connectivity k, and for any graph with maximal local edge-connectivity 3. We also consider several related graph classes defined by constraints on connectivity. In particular, we show that there is a polynomial-time algorithm that, given a 3-connected graph G with maximal local connectivity 3, outputs an optimal colouring for G. On the other hand, we prove, for k ≥ 3, that k-colourability is NP-complete when restricted to minimally k-connected graphs, and 3-colourability is NP-complete when restricted to (k − 1)-connected graphs with maximal local connectivity k. Finally, we consider a parameterization of k-colourability based on the number of vertices of degree at least k + 1, and prove that, even when k is part of the input, the corresponding parameterized problem is FPT.
Type de document :
Article dans une revue
Journal of Graph Theory, Wiley, 2017, 85 (4), pp.814-838. 〈http://onlinelibrary.wiley.com/doi/10.1002/jgt.22109/abstract〉. 〈10.1002/jgt.22109〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01570035
Contributeur : Frederic Havet <>
Soumis le : vendredi 28 juillet 2017 - 10:56:09
Dernière modification le : lundi 4 décembre 2017 - 15:14:19

Fichier

colourConnectivity.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierre Aboulker, Nick Brettell, Frédéric Havet, Dániel Marx, Nicolas Trotignon. Colouring graphs with constraints on connectivity. Journal of Graph Theory, Wiley, 2017, 85 (4), pp.814-838. 〈http://onlinelibrary.wiley.com/doi/10.1002/jgt.22109/abstract〉. 〈10.1002/jgt.22109〉. 〈hal-01570035〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

18