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Riemannian Geometry for Brain-Computer Interface;  

a Primer and a Review 

 

Abstract 

Despite its short history, the use of Riemannian geometry in brain-computer interface (BCI) 

decoding is currently attracting increasing attention, due to an accumulating documentation of 

its simplicity, accuracy, robustness and transfer learning capabilities, including the winning 

score obtained in five recent international predictive modeling BCI data competitions. The 

Riemannian framework is sharp from a mathematical perspective, yet in practice it is simple, 

both algorithmically and computationally. This allows the conception of online decoding 

machines suiting real-world operation in adverse conditions. We provide here a review on the 

use of Riemannian geometry for BCI and a primer on the classification frameworks based on 

it. While the theoretical research on Riemannian geometry is technical, our aim here is to 

show the appeal of the framework on an intuitive geometrical ground. In particular, we 

provide rationale for its robustness and transfer learning capabilities and we elucidate the link 

between a simple Riemannian classifier and a state-of-the-art spatial filtering approach. We 

conclude by reporting details on the construction of data points to be manipulated in the 

Riemannian framework in the context of BCI and by providing links to available open-source 

Matlab and Python code libraries for designing BCI decoders. 

 

Keywords: Brain-Computer Interface, Riemannian Geometry, Electroencephalography, 

Classification, Signal Processing, Covariance Matrix, Decoding, Geometric Mean. 
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1.  Introduction 

Electroencephalography (EEG) is the oldest and most widespread brain imaging modality, 

flourishing over an 80 year-old tradition in cognitive and clinical neurophysiology [1]. An 

EEG-based Brain-Computer Interface (BCI) is a system for translating EEG signals directly 

into commands for a computerized system. Over the past 15 years the BCI field has grown 

considerably thanks to substantial granting by the EC in Europe and by the NIH and NSF in 

the USA, among others, becoming the most prominent applied research area for EEG as a 

whole [2-5]. Functionally, a BCI is constituted by two agents, the user and a computer 

(machine), entering in reciprocal interaction by means of two distinct elements: a decoder, 

which is the core of a BCI that translates brain signals into commands and an interface, the 

computerized application, whose ultimate goal is performing actions while giving continuous 

feedback to the user about its operation. The latest research on BCIs has taken several 

disjointed but intimately related paths. In order to build a frame for the arguments we advance 

in this article we provide here a quick overview of these lines of research: 

I) The study of the applicability of BCI technology to clinical populations (e.g., [6-14]), 

for instance, in comparison (or combination) to other Assistive Technology (AT) such as eye-

tracking, electrooculography and contactors [15, 16]. 

 

II) The study of new electrophysiological markers that may be used to improve a BCI 

decoder in addition to the traditional (steady-state) event-related potentials and event-related 

(de)synchronization, such as global synchronization [17] and phase-lag index variance [18]. 

 

III) The improvement of the BCI interface by studying its properties [19-22]. For P300-

based BCI these lines of research have led to, inter varia, the introduction of language models 

for letter and word prediction [23-25], automatic pause detection [26], the use of faces for 

flashing symbols [24], the use of random groups or pseudo-random groups flashing instead of 

row-column flashing [27-30], the use of inter-stimulus intervals randomly drawn from an 

exponential distribution instead of constant [27], the dynamic stopping of flashing sequences 

[25, 31], etc. For SSVEP-based BCI improvements of the interface include the use of precise 

tagging of the flickering so as to use phase information (e.g., [32]) and the use of smart 

flickering sequences such as code modulation [33], multi-phase cycle coding [34], etc. 
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IV) The study of physiological, anatomical, cognitive and emotional factors that may lead 

to improvements of the performance and usability, such as the motivation and empathy of the 

user in P300 spellers [35], gray matter volume in non-primary somatosensory and motor areas 

in a BCI based on motor-imagery [36], etc. 

 

V) The development of EEG sensing technology, including portability and autonomy of the 

amplification unit (e.g., http://openbci.com), the performance, comfort and usability of the 

electrode-cap (e.g., [37-39]), new type of sensors (e.g., [40]), on-line EEG signal quality 

monitoring [41, 42], and all ergonomic matters such as accessibility, usability and acceptance 

of the technology [43]. 

 

VI) The study of BCI-related academic subjects such as the transfer rate metrics, that is, 

how the actual online accuracy of a BCI should be evaluated [44]. 

 

VII) Multi-subject BCIs, that is, BCI systems controlled by several users, in proximity one to 

the other or remotely connected [45-48]. Besides allowing remote social operation, this 

functioning has potential to achieve 100% accuracy on single trials by combining the data of 

several users. 

 

VIII) BCI Hybridization, that is, the combination of several BCI modalities on the same 

interface to increase the accuracy, the ergonomy, usability and the bit rate (e.g., [49-51]). 

 

IX) The increase of robustness for a BCI. This line of research is central to the present 

article, so we describe it in some details in the next section. Poor usability and lack of 

robustness are major limits of state-of-the-art BCIs. This can been found stated in all review 

and position papers (e.g., [52, 53]), as well as in roadmaps drawn by integrative projects such 

as Future BNCI1 and BNCI Horizon 20202. In summary, it has been stated that: “efforts to 

commercialize research findings have been tepid, hampered by a general lack of robustness 

when translating technologies to uncontrolled environments beyond the research laboratory 

[54]. The usability and robustness of a BCI heavily depend both on the application and on the 

                                                           
1 http://bmiconference.org/wp-content/uploads/files/Future_BNCI_Roadmap.pdf 
2 http://bnci-horizon-2020.eu/roadmap 

http://bmiconference.org/wp-content/uploads/files/Future_BNCI_Roadmap.pdf
http://bnci-horizon-2020.eu/roadmap
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decoder. The former is a traditional subject of study in the field of human-machine interaction 

(HMI). In this article, we address the latter.  

 

1.1 BCI Decoders of Second Generation 

The decoder is traditionally conceived as formed by three independent modules: pre-

processing, feature extraction and classification [55]. One source of dispersion in the field is 

that each one of the three main BCI modalities, namely, based on motor/mental-imagery (MI), 

event-related potentials (ERP) and steady-state evoked potentials (SSEP) is currently treated 

with dedicated pre-processing, signal processing and classification modules. The decoding 

strategy itself is also fragmented; we can divide existing paradigms in two categories: those 

that follow a hard machine learning approach, and those that use signal processing to 

increase the signal-to-noise ratio followed by a simple classification algorithm. Some 

algorithms of the hard machine-learning kind generalize fairly well across sessions and across 

subjects, but require a substantial amount of training data. Furthermore, they are often 

computationally intensive. The opposite happens for the spatial filtering kind, where bad 

generalization capabilities are compensated by a fast training and lower computational cost. 

The major factors jeopardizing the operation of a BCI decoder in real-world operation are the 

inter-subject physiological variability and the great variability of real-world environmental 

conditions (e.g., [56]). Three inter-connected lines of research are trying to overcome these 

limits, addressing jointly the improvement of BCI usability and robustness: 

1. The ability to use a BCI without calibration or after a short calibration has been 

recognized in the community as a priority for improving BCI usability. Toward this objective 

effort is put in the conception, analysis and testing of generic model classifiers and/or domain 

adaptation methods, allowing the so-called transfer learning, whereas data from other 

sessions and/or other subjects are used to initialize a BCI so as to start using it without 

calibration and also to increase the performance of low-performance users [25, 30, 57-63]. 

While generic initializations by transfer learning are easier to implement, we name a smart 

initialization an initialization seeking optimality for a given user, topic on which little has 

been done so far. 

 

2. The continuous (on-line) adaptation of the classifier, which complements the (smart) 

initialization of point 1., in that the adaptation ensures that optimal performance is achieved 
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regardless of how good the initialization is. It also allows keeping optimal performance by 

adapting to mental and environmental changes during the session, enabling continuous 

adjustments (“pursuing”), thus ensuring reliability and robustness throughout the session and 

across-sessions [30, 62, 64-66]. 

 

3. The conception, development and maintenance of world-wide massive databases (e.g., 

[54]). Such a resource is necessary to boost research by allowing massive testing of decoding 

strategies. It also enables the systematic study of the source of variation in individual EEG 

patterns and their relation to BCI capabilities and individual attainable performances. Finally, 

it yields the (smart) initialization of a BCI (by subject-specific transfer learning), which is 

necessary to use effectively a BCI without calibration. It is very recent the inception of a large 

public database of BCI data thanks to the BNCI Horizon 2020 European Coordination 

project3.  

 

In consideration of current limitations of BCI decoders it has been stated that “the field would 

benefit from a new paradigm in research development that focuses on robust algorithm 

development” [54]. It has soon been realized that the path for reaching the sought usability 

and robustness does not pass by the enhancement of the system complexity, instead “we need 

to make a balance between technological advancement and practical use in a real-world 

situation” [67]. Along these lines, it has been recommended to start regarding the pre-

processing, feature extraction and classification not as isolated processes, but as a whole [67, 

68]. Taking into accounts all the aforementioned current lines of research I-IX, we suggest 

here a list of requirements a modern BCI decoder should possess:  

 

a) It should be accurate in general, as compared to established state-of-the-art approaches. 

b) It should be reliable, that is, it should maintain as much constant as possible its functions 

and accuracy in routine circumstances, as well as in hostile or unexpected circumstances. 

c) It should perform generally well as initialized with generic parameter, even for a naive 

user, that is, it should possess good generalization abilities both cross-subject and cross-

session. 

                                                           
3 http://bnci-horizon-2020.eu/database/data-sets 

http://bnci-horizon-2020.eu/database/data-sets
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d) It should learn fast the individual characteristics and then maintains optimality, adapting 

fast to the mental state of the user and to environmental changes. 

e) It should be universal, that is, applicable to all BCI paradigms (hence to hybrid systems). 

f) It should be algorithmically simple, so as to be robust and usable in unsupervised on-line 

operation. 

g) It should be computationally efficient, so as to work on small electronic devices in line 

with the current trend in portability of micro-electronic devices. 

h) It should be able to readily generalize to the multi-user setting, in line with the current 

trend on the social nature of current electronic technology. 

 

The aim of this article is to describe a simple BCI decoder paradigm that possesses all these 

requirements. In our conception the key for the sought usability robustness is obtained in 

“real-life” situations by both good generalization and fast learning capabilities. The approach 

we delineate represents a true paradigmatic shift and has been possible thanks to recent 

advances in Riemannian geometry, resulting from converging advances in differential 

geometry, operator theory, matrix analysis, probability, quantum physics and numerical 

analysis [69]. The use of Riemannian geometry for classification and detection of empirical 

data is relatively new, but has spread rapidly driven by practical problems in a number of 

diverse application fields including radar data processing, image processing, computer vision, 

shape analysis, medical imaging (especially diffusion magnetic resonance imaging and, 

indeed, BCI), sensor networks, elasticity, mechanics, optimization and machine learning. 

Thanks to its properties it behaves well in a fully adaptive mode of operation and generalizes 

straightforwardly to the multi-user setting. A schematic representation of a BCI mode of 

operation incorporating such a decoding technology is presented in fig. 1. In this article we 

explain the key features of a Riemannian decoder, without assuming any knowledge on 

differential geometry. We then review existing literature on Riemannian BCI decoders. BCI-

specific EEG data pre-processing is detailed in Appendix I. In Appendix II we point to 

available open-source code libraries, including Matlab and Python libraries. 
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Figure 1: Concept for a possible new generation of BCIs.  At start-up a BCI queries a 

database to obtain an initialization, possibly sending minimal EEG data of the user so  as to 

receive back a smart initialization that fits appropriately even a naive user. The BCI is 

operational straightaway, albeit  possibly suboptimal at the very beginning. While being 

used the BCI adapts to the user and sends back the data to the database, along user 

information, so as to enrich the database and to allow smarter initializations in future 

sessions of the same user as well as other users. Multiple subjects may use at the same time 

the same BCI, in which case the decoding machine of the BCI may be located on the server, 

so to exploit the multitude of data to increase performance.  

 

2. A Primer on the Riemannian Classification Framework 

 

« It often happens in analytic geometry that complex algebraic relations 
translate simple geometric properties, thus … using the geometric language 
we can express algebraic relations clearly, concisely and in a way that is 
accessible to intuition… often then a geometric relation can be discovered 
more easily as compared to its algebraic equivalent, thus the language of 
geometry provides both an expressive exposition and an effective research 

tool. » (Levi-Civita, 1925 [70], p.9, translated from Italian by author M.C.) 

 

A symmetric positive definite (SPD) matrix, hereafter referred to as a positive matrix, can be 

thought of as a generalization to multiple dimensions of squared real numbers. Particularly, 

whereas the variance of a random variable in one dimension is a positive number (a sum of 

squares), the variance of a N-dimensional random variable is a positive matrix, usually named 

the covariance matrix. A positive matrix has a long list of important algebraic and analytic 

properties, which can be found in the monograph of Bhatia [69]. Our goal in this section is to 

introduce the basic Riemannian approach for classifying EEG data and to explain its rationale. 

We will do it by showing that it is a generalization to the multi-dimensional case of the well-



9 

 

known straightforward decoding approach based on a single-channel signal variance 

thresholding. Throughout this document N indicates the number of available EEG sensors. 

Consider first the case of EEG signal recorded at one electrode (N=1), say, at the vertex (Cz). 

Such a signal forms a single time series, which we will indicate as x(t). This suffices, for 

instance, to detect the beta-rebound phenomenon occurring after the feet have been moved for 

a few seconds and as such it has been used, for example, in the “tie-fighter” OpenViBE 

demonstrator [71] and in [72]. The beta-rebound is a temporary increase in signal energy, 

often named “power”, in the beta frequency range (e.g., 16-24 Hz). Let us indicate by 
k

x  a 

time-window composed of T samples in which the beta-rebound is to be detected, where k is 

the index of the time-window under consideration (e.g., a trial) and where the bold character 

k
x  denotes a vector (hereafter matrices as well will be indicated by bold characters). For data 

filtered in an appropriate band-pass region, which has the effect to retain the energy only in 

that region and to nullify the mean of the signal, the energy of the signal in time-window 
k

x  

can be estimated by the signal variance  Var
k

x , often indicated by greek letter sigma 2

k
 . 

Since the signal is centered, the variance is estimated simply averaging the squares of the 

elements of 
k

x . The variance can be monitored on-line by means of sliding windows, yielding 

continuous estimations 2

k
 , for k=1,2,… A beta-rebound is detected whenever the signal 

variance for the current time-window exceeds a threshold (Fig. 2). Equivalently, one can 

estimate a representative value of the variance at rest, that is, a “mean” of the variance at rest, 

name it 2

0
  and a mean of the variance during the beta-rebound, name it 2


; the beta-rebound 

is then detected whenever the current observed value 2

k
  is closer to the beta-rebound mean as 

compared to the rest mean, i.e., whenever    2 2 2 2

0
, ,

k k
     


 . Here  ,    denotes an 

appropriate distance function between the two scalar arguments (Fig. 2). Such a classifier can 

be found in the literature under the name Minimum Distance to Mean (MDM), Nearest 

Centroid or Mean-of-Class Prototype [73]. It is a particular instance of the weighted nearest 

neighbor classifier, which is the simplest classification approach one can think of4. Its interest 

is that it works in the same way for any number of classes and that it can be extended 

appropriately to any dimension, as we will see. 

                                                           
4 In fact, on can think of the mean as a weighted function of the training examples.  
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Figure 2: The Minimum Distance to Mean (MDM) classifier in the two-class 

mono-dimensional case. Given the observed value of the variance 2

k
  the current 

trial is assigned to class “Beta-rebound” if its value exceed the threshold, to the 

“rest” class otherwise. Equivalently, one may estimate a mean for each class and 

assign the current trial to the closest mean, according to a distance function here  

indicated by the arrows. This latter procedure generalizes straightforwardly to the 

multi-dimensional case and to any number of classes.  

 

In order to implement the MDM we need an appropriate distance function (metric) and the 

corresponding mean function. In mathematics, a metric (or distance) is a function that defines 

a distance between each pair of elements of a set, with the following properties:  

 it is non-negative  

 it is equal to zero only if the two elements are equal  

 it is symmetric 

 it obeys the triangle inequality.  

A set endowed with a metric is called a metric space. For example, we define here the metric 

space (S, d) as the set of positive real numbers S = (0, ) endowed with metric d. According to 

a principle of Maurice Fréchet, each metric in such metric space leads to the concept of mean 

as it follows: 

Fréchet’s variational approach (mono-dimensional case)  

Let (S, d) be the metric space of positive real numbers endowed with metric d                      

and {c1,…, cK} be a set of K points in it. The mean of the set {c1,…, cK} is a point x 

minimizing the dispersion  21 ,K k k
d x c .  
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The determination of the mean in this way is a least-squares problem, actually the reason why 

Adrien-Marie Legendre developed it for his astronomical studies: 

« Therefore we see that, in a way, the least-squares method let us know the 
center around which the experimental results take position, so as to deviate 

from it as little as possible » (Legendre, 1806 [74], p.75 (appendix), translated 

from French by author M.C.) 

The most familiar metric on S is the “usual” Euclidean distance. If we take the Euclidean 

distance  

  ,
E

d a b a b  ,  (1) 

the corresponding Euclidean mean of a set of points {c1,…,cK} is the point m that solves the 

minimization  
221 1arg min , arg minK Kk E k k k

m m

d m c m c   . This turns out to be the usual 

arithmetic mean 1

K k k
m c  . Thus, the Euclidean mean is the point minimizing the sample 

variance, the dispersion of the set around the mean according to the Euclidean distance. For 

BCI applications, an MDM classifier based on the Euclidean distance and associated mean 

gives poor results already in the mono-dimensional case. The practice in the BCI field is to 

consider the log-transformed variance instead (e.g., see [75]). This results in the log-

Euclidean distance, also called hyperbolic or geometric distance on S, defined as 

  , log log log a
G b

d a b a b   .  (2) 

This switch to the logarithmic scale is common to many areas. Some examples are the Richter 

scale for earthquake intensity, the decibel scale for sound, the octave scale in music, the pH 

value in chemistry and f-stops in camera light exposure. In statistics, if a and b are two sample 

variances, their ratio is the usual F Snedecor’s statistic for testing equality of two variances 

and the log of their ratio has the general Fisher’s z distribution [76]5. Contrarily to the 

Euclidean distance (1), the geometric distance (2) enjoys the scale invariance 

                                                           
5 It is worthwhile to note here that the logarithmic function is a one-to-one function from the half-line S =(0, ) 

to the whole real line ( , )   . Its inverse map is the exponential map. Whereas the space S  has a boundary 

point 0, which does not belong to S, the real line does not have such a point. In the language of metric spaces, S 

with the metric (2) is a complete metric space. This guarantees the existence of certain limits and 

minima/maxima. Loosely speaking, with respect to the Euclidean distance (1) the point 0 is at a finite distance a 

from any point a of S, whereas with respect to the geometric distance (2) 0 is infinitely distant from a. Also, 
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    , ,G Gd xa xb d a b , for all a, b, x  > 0 (3) 

and the invariance under inversion 

    1 1, ,G Gd a b d a b    , for all a, b > 0. (4) 

The Fréchet mean of the K points {c1,…,cK} corresponding to the geometric distance is the 

point g that solves the minimization problem  
221 1arg min , log logK Kk G k k k

g

d g c g c   . 

This turns out to be another famous Pythagorean mean, the geometric mean: 

  1

1 2
exp logK

KK k k
g c c c c      .  (5) 

Inherited from the geometric distance, the geometric mean is an appropriate descriptor of the 

central tendency (expected value) for the variance, while, inherited from the Euclidean 

distance, the arithmetic mean is not. In fact, the distribution of the variance is a chi-squared. 

As such, it is symmetric only asymptotically with sampling size and it is well-known that the 

arithmetic mean is a good central tendency descriptor only for symmetric distributions. This is 

illustrated in the left column of Fig 3; while for Gaussian distributions both the arithmetic and 

the geometric mean are good descriptor of the central tendency, for chi-squared distributions 

the geometric mean is a better descriptor. 

 

                                                                                                                                                                                     
when b is a reference, say b=1, the square of the geometric distance goes to infinity as a goes toward either  or 

0. This is useful in modeling phenomena where a very small signal is as unlikely as a very large one and 

provides us with an appropriate measure to compare two variances.  
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Figure 3: Arithmetic and geometric means.  Empirical isodensities of Chi-

Square (10 degrees of freedom, top row) and Gaussian (bottom row) 

distributions, without (left column) and with outliers (right column) . See 

text for explanations. 

Let us now see how the Riemannian distance on the manifold of positive matrices can be 

understood as a straightforward generalization to any dimension of the mono-dimensional 

geometric distance (2) and how we can derive the associated mean. Again, we will consider a 

practical example. Consider the case N=2. Let  1
x t  and  2

x t  be two EEG time series 

(random variables) recorded at electrodes C3 and C4 as a function of time. Such a setting has 

been used, for instance, in the pioneering work on BCI [77] for classifying left hand and right 

hand motor imagery trials. As before, let 
1k

x  and 
2k

x  be the kth time-window under analysis. 

Their covariance matrix Ck  is 

 
   

   
1 1 2

2 1 2

Var Cov ,

Cov , Var

k k k

k

k k k

 
  
 

x x x
C

x x x
 . (6) 

As compared to the mono-dimensional setting, we are considering here not only the variance 

of the time-series, which are the diagonal elements of Ck, but also their covariance, which are 

the off-diagonal elements. Since Cov(x1k, x2k) = Cov(x2k, x1k), the matrix Ck is symmetric, thus 
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it is determined by (N(N+1))/2 of its elements, three in this case. Therefore, we can represent 

covariance matrices Ck as data points in a 3D space with coordinates along the axes Var(x1), 

Var(x2) and Cov(x1, x2). Because of the Cauchy-Schwarz inequality (or, equivalently, because 

of positivity of Ck), |Cov(x1k, x2k)|² ≤ Var(x1k) Var(x2k), any data point is confined in the 

interior of a symmetric cone (Fig 4). In electrophysiological terms, realization Ck moves along 

the three coordinates when either the energy (variance) at any of the two electrodes changes 

or when the phase synchronization and/or amplitude co-modulation between the signal 

captured at the two electrode changes. The more two points move away from each other along 

these coordinates, the more they will occupy separated regions in the cone (Fig 4). For any 

higher dimension N, the cone will become an hyper-cone, but everything we say applies in the 

same way.  

Now we turn to the question of equipping the cone of positive matrices with a suitable 

distance akin to the geometric distance on S. The space of NxN symmetric matrices is a linear 

space of dimension N(N+1)/2. It has a natural inner product on it given by  , trA B AB  

and associated Euclidean norm 
2

A , defined by  
2 22

2
tr nn A A A  , where n (A) are 

the N eigenvalues of A and tr is the trace operator. If the matrix A has elements aij, then 

22

, 12

N
iji j aA . So, 

2
A  is a natural extension to matrices of the Euclidean norm on 

vectors. The cone of positive matrices is a subset of symmetric matrices and naturally inherits 

this Euclidean norm. This might be satisfactory for some problems, but has several 

shortcoming in the BCI context, even in the simplest mono-dimensional case. Fortunately, 

another norm and associated distance coming from Riemannian geometry turns out to be just 

the right one. The set S++(N) of NxN positive matrices is a differentiable manifold. By that we 

mean that every small neighborhood around a point P in it “looks like” the Euclidean space of 

symmetric matrices, of which it is an open set. Think of “flattening” a small region of a 

surface (Fig. 5). The space of all symmetric matrices at any base point on the manifold is 

called the tangent space. Riemannian geometry begins by equipping with an inner product 

each tangent space, in a way that the resulting metric varies smoothly from point to point6. In 

this case, the inner product at a given point P is  

                                                           
6 Sometimes the inner product on the tangent space is referred to as the “metric”. In this work we name metric 

the distance function on the manifold deriving from the definition of inner product on the tangent space. 
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 1 1,  tr( ) 
P

A B P A P B .  (7) 

The associated norm is then 
2,P

A , given by 
1 1

2 2
2 22

1

2 22,

  
P

AA P PAP  . When P=I, the 

identity matrix, this reduces to the norm 
2

A  introduced earlier7. 

 

Figure 4: Symmetric Convex Cone of SPD matrices.  Any symmetric positive definite 

matrix lie in the interior of an open cone because of the Cauchy-Schwarz inequality. 

When the point touches the border of the cone the inequality becomes an equality 

and the matrix is no more positive definite. 

 

                                                           
7 Note that this Riemannian inner product is a matrix version of the Fisher information metric in probability; for 

two N-dimensional vectors a=(a1,…, aN) and b=(b1,…, bN) and a positive vector p=(p1,…, pN), the Fisher metric 

is defined as  2

n n nn
a b p . For this reason metric (7) is sometimes called the Fisher metric (or Fisher-Rao 

metric). 
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Figure 5.  Schematic representation of the symmetric positive definite matrix manifold, the 

geometric mean G of two points and the tangent space at G. Consider two points (e.g., two 

covariance matrices) C1 and C2 on M. The geometric mean of these points is the midpoint on 

the geodesic connecting C1 and C2, i.e., it minimizes the sum of the two squared distances 

δ2(C1, G)+δ2(C2, G). Now construct the tangent space TGM at G. There exists one and only 

one tangent vector ζ1 (respectively ζ2) corresponding to the geodesic departing from G and 

arriving at C1 (respectively C2) on the manifold; The map from the tangent space (symmetric 

matrices S) to the manifold (symmetric positive definite matrices S ++) is an exponential map. 

The inverse map from the manifold to the tangent space is a logarithmic map (see [69] for 

details). 

 

The next step is to compute the length of any curve in the space S++(N) using inner product (7) 

on the tangent space. This can be done using calculus. Now, given any two points C1 and C2 

in S++(N) there could be several curves passing through them. If there is a unique one of 

minimal length, it is called a geodesic8. Fortunately, in the manifold of positive matrices 

equipped with inner product (7) on the tangent space a geodesic exists for any two points C1 

and C2. The length of the geodesic from C1 and C2 (or vice versa) gives the Riemannian 

distance (Fig. 5). Simple calculations show that this distance has closed form solution given 

by [69, 78-83] 

    
1 1

2 2
N 2

1 2 1 2 1 1
, Log log

G n n
F

 
 


  C C C C C , (8) 

                                                           
8 It is useful here to look what happens on a sphere. Great circles are geodesic curves. If two points on the sphere 

are not antipodal, then there is a geodesic passing through them. If the points are antipodal, then there are 

infinitely many great circles passing through them. 
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where λn are the N eigenvalues of matrix 
1 1

2 2

1 2 1

 

C C C  or, equivalently, matrix 1

1 2


C C  and where 

in both expressions the indices 1 and 2 can be permuted, showing that this distance is 

symmetric9. It is clear that in the very special case N=1, this reduces to the geometric distance 

(2) between positive real numbers10.  

Definition of distance (8) as the length of a geodesic ensures that it has all the properties of a 

distance function. It has several nice additional properties, some of which are important for its 

use in BCI. We mention just two of them: given an invertible matrix X, the matrix XAXT is 

called a congruence or a conjugation (here superscript T denotes the transpose). A matrix A is 

positive if and only if XAXT is positive. The distance (8) is invariant under any congruence, 

i.e.,  

    1 2 1 2
, ,T T

G G
 XC X XC X C C  . (9) 

It is also invariant under inversion, i.e., 

    1 1

1 2 1 2
, ,

G G
   C C C C .  (10) 

These two properties are straightforward extensions to matrices of (3) and (4), respectively, 

and are instrumental for the robustness of Riemannian BCI decoders, as we will see.  

Having defined the Riemannian distance for the general (matrices) case, we can obtain the 

corresponding Riemannian mean:  

 

                                                           
9 In order to avoid confusion in (8) and hereafter we denote Log(·) and log(·) the matrix and scalar logarithm, 

respectively. One should be careful with quantities involved in equation (8): while 1

1 2


C C  and 

1 1
2 2

1 2 1

 

C C C  are 

similar, hence have the same eigenvalues, they do not have the same eigenvectors. The fact that indices 1 and 2 

can be permuted in equation (8) is due to the fact that the eigenvalues of 1

1 2


C C are the inverse of those of 1

2 1


C C  

(since these two matrices are the inverse of each other) and for any positive number  it holds log²  = log² -1. 

10 This is so if we take dG to mean the extreme right hand side expression in (2). The middle expression could 

suggest a simpler generalization of (2) allowing matrix distance function 1 2 2
Log Log C C . This is called the 

Log-Euclidean distance and is different from Riemannian distance G unless C1 and C2 commute in 

multiplication. The Log-Euclidean distance and associated mean   1Exp Log kK k C  are useful in several 

problems (e.g., [84]), however they fail to have the crucial congruence-invariance property. This will be 

encountered next.  
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Fréchet’s variational approach (general case): Let (S++(N), δ) be the metric space of positive 

matrices endowed with metric δ and {C1,…, CK} be a set of K points in it. If there exists a 

unique point X for which the dispersion  K 21

K 1
,

k k


 C X  is minimal, then X is called the 

mean of the points {C1,…, CK}. 

  

Note the condition that the minimizer of the dispersion exists and that it is unique. In fact, it 

may not be the case. For example, on the surface of a sphere with its usual distance, any two 

antipodal points have infinitely many “means”, due to the fact that a geodesic does not exist in 

this case. As an example take the points as the two poles: all points on the equator are equally 

reasonable candidates for a “mean”.   

Again, the arithmetic mean 1

1

K

K k k
 M C is the minimizer of the dispersion according to the 

Euclidean distance, i.e.,  K 21

K 1
arg min  ,

k E k



M

C M = 
2K1

K 1k k F
 C M . We consider the 

corresponding problem with respect to the distance (8), yielding  K 21
K 1

arg min   ,
k G k



G

C G .  

The Riemannian metric G has several nice properties ensuring that G thus defined exists and 

is unique. This was first established by Élie Cartan, and G is variously called the Cartan, 

Karcher, Fréchet, Riemannian or geometric mean as well as the center of mass of 

{C1,…,CK}11. 

The invariance property (9) and (10) of the Riemannian distance bestow upon geometric mean 

G the congruence invariance 

    1 2 1 2
, , , ,T T TG XC X XC X XG C C X ,  (11) 

for any invertible X, and the self-duality 

                                                           
11 The geometric mean of two positive matrices C1 and C2 has been studied since the 1970’s by electrical 

engineers, physicists and matrix analysts. A closed-form expression for it is known. More recent is the 

realization that this mean is simply the midpoint of the Riemannian geodesic connecting C1 and C2 (Fig. 5). The 

geometric mean of several positive matrices {C1,…,CK}, though known to geometers since the work of Cartan, 

has entered the discourse on matrix theory and its applications more recently. It has been an object of intense 

study in the past 15 years and several new facts and applications have been discovered. 
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     
1

1 1

1 2 1 2
, , , ,


  G C C G C C ,  (12) 

both of which are very useful in applications. The arithmetic mean possesses the congruence 

invariance but not the self-duality12. Another important property is the determinant identity: 

the determinant of the geometric mean G(C1,…,CK) is equal to the geometric mean of the 

determinants of C1,…,CK. This is in stark contrast to the arithmetic mean, where the 

determinant of ½(C1+C2) can be larger than both the determinant of C1 and of C2
13. When 

K>2, no closed-form expression for the geometric mean is known. A useful characterization 

of the geometric mean is as the unique solution of non-linear matrix equation  

  
1 1

2 21 LogK k k

 

 G C G 0 .  (13) 

A steepest descent iterative algorithm has been proposed [81, 87]. A fixed point 

approximation with faster convergence rate and favorable convergence properties can be 

found in [88]. Appendix II points to programming code resources for estimating the geometric 

mean.  

In summary, the Riemannian metric on the manifold of positive matrices provides us with an 

appropriate definition of distance and mean functions, regardless of the dimension N. Thanks 

to these two functions we can apply the MDM classifier in the same way for any dimension of 

the data (i.e., any number of electrodes) and any number of classes. Based on this level of 

generality, we will now answer the natural question: why such a simple decoding approach 

works well in practice? 

 

                                                           
12 The dual of the arithmetic mean is another famous Pythagorean mean, the harmonic mean, both for positive 

real numbers and positive matrices. For scalars, this is the Fréchet mean corresponding to the distance function 

  1 1,Hd a b a b    on (0, ). Only the geometric mean is its own dual, as per (12). Another interesting 

property of the geometric mean is that the geometric mean of the arithmetic and the harmonic mean is the 

geometric mean of the set. 

13 This is meaningful, for instance, in interpolating points along geodesics. Let C be the covariance matrix of a 

multivariate N-dimensional Gaussian process, with eigenvectors un and corresponding eigenvalues λn. The 

determinant of C is the generalized variance of the process [85, 86]. The square root of this determinant is 

proportional to the volume of an ellipsoid whose axes point in the direction of un, and whose length is 

proportional to the square root of λn. Therefore, we require that the determinant of a point C interpolating 

between C1 and C2 be continuous and monotonic along the geodesic joining C1 and C2. Imagine an ellipsoid 

whose shape and volume smoothly changes from that of C1 to that of C2 (see for example [84]). 
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3. Why the Riemannian Metric? 

3.1 Equivalence between Sensor Space and Source Space  

Much research effort in the BCI field have been injected in feature extraction methods 

based on spatial filters and source separation. The aim of these methods is to decompose the 

sensor measurement in a signal part plus a noise part and feed a classifier only with features 

extracted on the signal part. The principal reason why manipulating data points by 

Riemannian geometry is effective is that the Riemannian manipulations in the sensor space 

are equivalent to those that can be done in the source space of the same dimension. To see 

this, consider first the nature of spatial filters. 

Spatial Filters: Given the N-dimensional observed EEG measurement vector x(t), a spatial 

filter is a PxN matrix B, with 0<P≤N, realizing linear combinations of samples x(t) possessing 

a desired optimal property. Any linear spatial filter can be written as 

   t ty Bx .      (14) 

 

Spatial filters differ from one another depending on how matrix B is derived. Borrowing from 

standard machine learning techniques, the extracted components y(t) are usually forced by 

construction of the filter to be uncorrelated and their number, P, is usually chosen smaller 

than the number of electrodes, N, wherein the discarded N-P components explain EEG energy 

not related to the task, i.e., the noise suppressed by the filter.  

A specific class of spatial filters is the family of blind-source separation methods [89]. While 

the components y(t) of a spatial filter do not need to have any physiological meaning, source 

separation components are estimations of the waveform of actual brain sources generating the 

observed EEG scalp measurement. It is universally accepted that the observed EEG is well 

approximated by a linear mixture of brain dipolar sources [90], so that we usually employ as 

EEG data generation model 

    t tx As , (15) 
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where s(t) is a vector holding the unknown source processes and A is the mixing matrix, 

assumed here invertible, with its left-inverse B named the demixing matrix. The mixing 

matrix depends on the dipole position and orientation in the brain, the physical properties of 

the head and on the position of the electrodes on the scalp. Once estimated B, the source 

process are estimated by (14), out of the usual scaling and permutation ambiguities [90, 91].  

Now, let Si and Sj be the covariance matrix of the unknown source process for any two trials. 

From (15), the two corresponding sensor covariance matrices are T

i iC AS A  and 

T

j jC AS A . Because of the congruence invariance property of the Riemannian distance (9)

we have this insightful result:  

 If P=N  then    , ,
G i j G i j
 S S C C ,  (16) 

i.e., if we estimate a square spatial filter the distance in the sensor space (Ci and Cj) is 

equivalent to the distance in the source space (Si and Sj), it does not matter how optimal for 

classification the extracted components are. We say that EEG spatial mixing is an isometry in 

the Riemannian space. From a classification point of view, in a given space dimension the 

congruence invariance allows to keep information of the feature space for whatever change of 

coordinates. If we take P<N, meaning that we estimate less components than available 

sensors, we can still find a projection in a source sub-space enhancing the separation of the 

classes, that is, we can still improve the classification achieved by the MDM as applied in the 

sensor space. We will see in section 4 that in practice the improvement is worth the effort of 

estimating a spatial filter only if the number of available electrodes is large. This happens 

because the Riemannian distance is robust with respect to noisy components and if N is small 

the number of noisy components is small as well. 

 

3.2 Robustness of Geometric Mean 

As it is often reported, one of the major challenges of EEG-based BCI is the fact that EEG 

data are contaminated by several sources of artefacts, including biological, environmental and 

instrumental artefacts. These contaminations are better controlled in a laboratory as compared 

to real-world situations. An obvious reason why the Riemannian metric proves advantageous 

is the robustness of the geometric mean to outliers. This is illustrated in Fig. 3; when outliers 
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are present, the geometric mean deviates less from the center of the distribution as compared 

to the arithmetic mean, both in the case of data distributed as Gaussian (symmetric) and Chi-

Squared (asymmetric). The distortion of the arithmetic mean is more pronounced for the Chi-

Squared data. Such robustness of the geometric mean is directly inherited from the geometric 

distance function (see section 2).  

 

3.3 Generalization Capabilities 

The invariance by congruence of the Riemannian distance (9) is also instrumental to make the 

whole Riemannian framework more robust to modifications of the EEG source spatial 

distributions typically observed across sessions and across subjects. The true mixing matrix A 

in (15) is highly specific to a single subject and changes also for different sessions of the same 

subject because of unavoidable different position and impedance of the electrodes.  

Consider cross-session learning first. Let again Si and Sj be the covariance matrix of the 

unknown source process for any two trials and T

i iC AS A , T

j jC AS A  be the two 

corresponding sensor covariance matrices. Now consider two trials in another session with the 

same source process covariance matrices Si and Sj and let A  be the mixing matrix of the new 

session. The sensor covariance matrices of the new session are T

i iQ AS A  and T

j jQ AS A . 

So, in the two sessions we observe different covariance matrices albeit the source covariance 

is identical (Si and Sj). We have this remarkable result: the distance between the two observed 

covariance matrices is the same in the two sessions, i.e.,  

    , ,G i j G i j C C Q Q .  (17) 

The proof is straightforward: conjugating both T

iAS A  and T

jAS A  by A-1 (a congruence) we 

obtain    , ,T T

G i j G i j AS A AS A S S  and conjugating both iS  and jS  by A  we obtain 

the desired result (17). Note that isometry (17) holds it does not matter how far A  is from A . 

In contrast, the more A  differs from A , the more the performance of a spatial filter applied 

across-session will degrade. An empirical validation of this property is illustrated Fig. 6. 
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Figure 6: Illustration of Cross-Session Transfer Learning. Distributions of the classification 

output for a two-class motor imagery classification problem. After applying a random linear 

transformation, the Riemannian classifier conserve a relatively good accuracy, while the 

classification based on the common spatial pattern filter (CSP: see section 4) is unable to 

capture relevant information and outputs random labels. 

In cross-subject learning the source process of different subjects is different in addition to 

their mixing matrix. Thus the deterioration of the performance will be higher for both the 

Riemannian MDM and a classifier based on spatial filtering, however, the former will still be 

superior thanks to the aforementioned isometry of the mixing process. This has been shown 

on BCI data in [58] - see figure 8.5 therein. 

 

4. Comparison with the Common Spatial Pattern 

In this section we compare the Riemannian MDM algorithm to the state-of-the-art spatial 

filter known as common spatial pattern (CSP), which has proven flexible, simple and accurate 

in controlled conditions [55, 93]. The CSP has been introduced in the machine learning arena 

by Fukunaga and Koontz in 1970 [93] and adopted for EEG data analysis by Koles [94, 95]. 
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In the BCI field it has been introduced in [96]. In the field of pattern recognition it is known 

also as the Fukunaga-Koontz transform (FKT: see for example [97]). In the signal processing 

literature one can find thousands of papers solving similar optimization problems, which 

always, like for the CSP, boil down to a generalized eigenvector-eigenvalue decomposition. 

Here we show that the CSP is intimately related to the more general framework offered by the 

Riemannian MDM algorithm. First, consider the rationale of spatial filters and particularly 

how the CSP filter is constructed. 

Let as consider again the general multidimensional case (N2) in a BCI where trials of left 

hand and right hand motor imagery are to be classified given a number of training trials. Let 

A
C , 

B
C  be estimations of the expected covariance matrix related to the two classes A and B 

(the order of classes is not important). They may be estimated by the arithmetic average of the 

training trials covariance matrices, as it is usually done, as well as by their Riemannian 

geometric mean [98, 99].  

The Common Spatial Pattern (CSP): the matrix F holding in the rows the first P/2 and last 

P/2 eigenvectors of NxN matrix 1

A


C C , whenever for any , > 0 linear combination 

A B
  C C C  is positive, satisfies 

     

T
A A

T
B B

T

 







FC F D

FC F D

FCF D

,      (18) 

where DA, DB and D are PxP diagonal matrices with positive diagonal elements dA,p, dB,p and 

dp, respectively, with p={1,…,P} and 1<P<N ([100], p.28-34;  [101], p.160-165). The CSP is 

usually defined taking C=½CA+½CB and scaling F such that FCFT=I, after which the vectors 

1, Pf f   of F are the solution to the P optimization problems 

   
1

,

,...,
,

max  ,   . .
P

A p

B p

d
w c

df f
   (18) , ,  and  1,  for all A p B pd d p  .  (19) 
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Note that the Riemannian distance between 
A

C  and 
B

C  is a function of the eigenvalues of 

matrix 1

B A


C C  (8), thus the P most extreme eigenvalues forming this distance are associated 

with the eigenvectors forming the CSP filter F. The elements dA,p and dB,p are the variances of 

the data filtered by the CSP filter as per (14). Each associated eigenvector pf  projects the 

data covariance in a mono-dimensional space where the ratio of the variance in the two 

classes is maximized (19), that is, the points are aligned so as to be maximally separated; the 

first P/2 vectors explains the maximum of the variance of class A and the minimum of class B, 

while the last P/2 vectors explains the maximum of the variance of class B and the minimum 

of class A. Consider now two unlabeled trials with filtered covariance matrix T

i i
E FC F  and 

T

j j
E FC F , with diagonal elements denoted ei,P and ej,p, respectively. Matrices Ei and Ej are 

not diagonal, thus their diagonal elements are not their eigenvalues. As a consequence, the 

Riemannian distance between the two trials  ,
G i j
 E E  cannot be expressed as a function of 

the diagonal elements ei,p and ei,p. In symbols, we have the following inequality: 

    
2

2

, ,
log log ,

p i p j p G i j
e e   E E ,  (20) 

with equality only if Ei and Ej are diagonal. In (20) the left-hand side is the sum of the P 

geometric distances between the features ei,p and ej,p extracted by the CSP filter (the CSP 

features) and the right-hand side is the total Riemannian distance between Ei and Ej (the 

Riemannian feature). We see that the CSP approximates the distances considered by the 

MDM algorithm, with the approximation getting closer as Ei and Ej approach diagonal form. 

The approximation is in general good due to the noise suppression operated by the CSP 

(P≤N), but the method is not robust for trials contaminated by noise making Ei and Ej far 

from diagonal form. 

The robustness of the Riemannian MDM method with respect to noise comes handy in real-

world BCI; with N small enough (<32) the difference in accuracy obtained by the CSP and 

Riemannian MDM methods is negligible [58, 102], whereas for N large the CSP proves 

superior because more and more irrelevant components are ignored by the CSP (P<<N), but 

not in the computation of the Riemannian distance between Ci and Cj. As we have seen in 

section 3.1, one may apply a CSP transformation and then apply the MDM in the reduced 

(denoised) space, i.e., on Ei and Ej, exploiting the advantages of both approaches, as it has 
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been done in [103]. This way higher accuracy may be obtained, however we need again to 

estimate a spatial filter and unless we adapt it on line such a filter is specific to the available 

training data, losing generalization power. Also, the Riemannian distance and mean are robust 

with respect to the noise if we do not filter the data whenever N is small. In conclusion, in 

real-world applications, where a small number of electrodes is applied, the MDM method 

offers a very competitive option, in that high accuracy is obtained without estimating spatial 

filters.  

 

5. Advanced Riemannian Classifiers 

The MDM algorithm is the simplest Riemannian approach. In this section we briefly report on 

more sophisticated Riemannian classifiers, which are capable to clearly outperform the CSP 

and other state-of-the-art methods. Those make use of the concept of tangent space. Tangent 

space mapping is a local projection that maps the elements of the manifold into an Euclidean 

space, keeping their distance relationship intact. This operation can be visualized as a local 

unfolding of the manifold curved structure into a plane (Fig. 5). Once projected into the 

tangent space, data points (i.e., positive matrices) can be vectorized so as to form a standard 

feature vector and thus fed into any standard classifier (e,g., linear discriminant analysis, 

logistic regression, support-vector machine, etc.) This operation allows the opportunity to 

produce complex decision functions, depending on the chosen classifier in the tangent space, 

combining the advantages of the chosen classifier with the advantages of using a Riemannian 

metric, as we have discussed. While the overall performance of Riemannian methods based 

on tangent space mapping is superior to the MDM method and clearly outperform the state of 

the art [102], they are less suitable for online operation because of the increased algorithmic 

complexity and possible need of intense learning inherited by the classifier. Studies that have 

been employing the MDM and the tangent space approach for BCI data will be considered in 

next section.  

 

 

 



27 

 

6. A review of studies applying Riemannian Geometry to EEG 

The use of Riemannian geometry in the EEG arena has been introduced independently in two 

groups, for classifying sleep stages [104-107] and for BCI based on motor imagery [102, 108-

110] and P300 [58, 111]. The interest in these works has led to a rapid follow up by the EEG 

community, especially in the BCI field: the connections of the CSP algorithm and the tools of 

information geometry have been investigated considering several divergence functions in 

alternative to the Riemannian distance [112-115]. Reference [98, 99] successfully tested the 

Riemannian geometric mean for estimating the average class covariance matrices for CSP 

spatial filters. They concluded that this choice should be preferred for N small, which is in 

line with our theoretical analysis. Reference [11] proposed a simple data augmentation 

approach for improving the performance of the Riemannian MDM algorithm. A hierarchical 

MDM classifier for multi-class problem has been tested in [117]. An adaptive (online) MDM 

algorithm has been implemented and tested in [58, 98, 102] for motor imagery-based and 

ERP-based BCIs and in [116] for SSVEP-based BCIs. Cross-subject learning with the MDM 

Riemannian classifier has been treated in a supervised fashion in [58, 118] and in an 

unsupervised fashion in [119, 120]. The use of power means as a generalization of the 

geometric mean has been proposed in [88]. The MDM algorithm for multi-user P300-based 

BCIs has been tested in [46, 47]. 

Advanced Riemannian classifiers based on the tangent space on the Riemannian manifold of 

positive matrices is also receiving increasing attention: in [102] it was shown that motor 

imagery classification can be improved significantly over the MDM by mapping the 

covariance matrices in the tangent space and applying a feature selection + LDA in the 

tangent space. In [110] a support vector machine embedded with a Riemannian kernel was 

used. These two methods outperform the state of the art, but they require tuning parameters to 

be learned. In [98] an extension of the Fisher discriminant analysis to the manifold of positive 

matrices was proposed. Matrices were mapped in the tangent space where a supervised 

projection of the points (regularized LDA with automatic regularization) was applied in order 

to increase the class separation and then remapped into the Riemannian manifold where the 

MDM was applied. This letter method does not require tuning parameters, but it still is more 

involving as compared to the simple MDM and inferior to complex decision functions taken 

in the tangent space. In [121] simultaneous EEG and EMG recordings were analyzed in the 

tangent space by means of canonical partial least squares to reconstruct spatial patterns in a 
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pinch-and-hold task. A multi-class linear discriminant analysis in the tangent space was 

proposed in [122]. In [123] it has been showed that the geometric mean of data is not the 

optimal basepoint for defining the tangent space and that a trimmed geometric mean can 

improve the classification performance in motor imagery-based BCI. Taken together these 

studies have shown that using more sophisticated classification methods in the Riemannian 

framework one may outperform the state of the art, but only at the expenses of the ergonomic 

requirements of the BCI as considered in the introduction.  

Metric/kernel learning, a hot topic in the machine leaning community, has been investigated 

in [124-125]. In parallel, geometry-aware dimensionality reduction (see section 3.1) inspired 

by the Riemannian framework is currently intensely investigated. Works related to BCI data 

include [126-131]. A relevant work, which can be readily borrowed from the computer vision 

community, is [132, 133]. 

Outside the BCI field, but still using EEG data, Riemannian classifiers have been tried in the 

diagnosis of clinical populations such as bipolar disorders and schizophrenia [134], in the 

detection of EEG artifacts [41], epileptic seizures [135], mental fatigue [136], respiratory 

states with use for a brain-ventilator interface [137] and sleep apnea events [138]. The 

geometric mean of event-related potentials (ERPs) have been studied in [139] as an example 

of a general method for visualizing and computing means of data in their native space, which 

is otherwise impossible once covariance matrices have been used to summarize the data point. 

In that work we have illustrated the robustness of the geometric mean with respect to outliers 

by computing the geometric mean of event-related potentials.  

It should be noted that articles using Riemannian geometry are currently appearing in several 

and diverse applied fields that are often completely disconnected. Nonetheless, developed 

methods are very similar, thus more or less interesting advances, possibly relevant in the BCI 

field, may be found in other scientific domains. Also, the Riemannian geometry framework is 

not limited to theoretical studies and applications to classification problems. An expanding 

line of research on Riemannian optimization is today at the forefront in the signal processing 

community and is gaining attention in biomedical engineering. The mathematical connection 

between the concept of Riemannian mean and the blind source separation/independent 

component analysis problem in EEG data has been explored in [91].  
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Finally, it is worth mentioning that Riemannian methods (MDM and/or tangent space 

projection) submitted by author A.B. in five BCI-related predictive modeling competitions 

have scored first over 352 competitors on the average (table 1). These results provide 

overwhelming evidence of the great potential of this approach and have been instrumental for 

the current attention Riemannian methods are receiving in the BCI community. 

 

Table 1: Results of five international predictive modeling data science competitions on BCI 

data where author A.B. has scored first in all occasions. Results in bold concern a submission 

that has used Riemannian geometry. Scores : Percent Accuracy for DecMeg 2014 and 

Decoding Brain Signal (chance level=50%) and area under the ROC for the other three 

(chance level=0.5). For Grasp and Lift EEG Challenge the reported area is the average 

across the 6 classes (see Appendix II for references to code submitted in these competitions).  

Legend: * https://www.kaggle.com; ° https://gallery.cortanaintelligence.com;  

  + https://sites.google.com/site/hubertcecotti/home/biomag2016 

 

Name of 

Challenge 

Associated  

Event or 

Organizer 

Closing 

Date 

Data Type 

(# of 

Classes) 

Challenge Participants 

(Teams) 

Three 

Best 

Scores 

DecMeg 

2014* 

BIOMAG 

2014 

Conference 

27/07/2014 MEG visual 

ERF  

(2 classes) 

Cross-subject 

transfer learning 

301(267) 75.5 

72.6 

71.3 

BCI 

Challenge* 

IEEE NER 

2015 

Conference 

24/02/2015 EEG Error 

Potentials 

(2 classes) 

Cross-subject 

transfer learning. 

Unbalanced data 

311(260) 0.872 

0.856 

0.818 

Grasp & Lift 

EEG 

Challenge* 

WAY 

European 

Project 

31/08/2015 Hand 

Movement 

Sequences 

(6 classes) 

Multiclass 

asynchronous 

prediction of time 

structured events 

452(379) 0.9810 

0.9802 

0.9799 

Decoding 

Brain Signal 

° 

Microsoft 01/07/2016 ECoG Face 

vs. House (2 

classes) 

Classification of 

ERP and induced 

activity 

688 (688) 93.75 

92.5 

88.33 

Biomag2016 

competition 

#3 + 

BIOMAG 

2016 

Conference 

25/09/2016 MEG visual 

ERF (2 

classes) 

Classification of 

facial expression 

7(5) 0.956 

0.866 

0.771 

 

7. Conclusions and Discussion 

Riemannian geometry is a relatively new classification framework operating a paradigmatic 

shift in the field of brain-computer interface. In this article we have provided a primer on the 

simpler Riemannian classification method, the minimum distance to mean (MDM), providing 

rationale on its efficacy without requiring any specific knowledge on differential geometry. 

https://www.kaggle.com/
https://gallery.cortanaintelligence.com/
https://sites.google.com/site/hubertcecotti/home/biomag2016
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Instead, we have highlighted the simplicity of its application in practice and we have relied 

mainly on intuitive (geometrical) explanations. The Riemannian MDM approach is based 

entirely on two simple concepts: the distance between two data points and a mean of a 

number of them. These two concepts are fundamental in many branches of mathematics. They 

can be easily understood and easily communicated to peers, yet, they allow a precise and 

robust classification method comparing well with the performance of more complex state-of-

the-art methods. To make a metaphor, it appears that we have started a long time ago 

measuring distances with a biased ruler (Euclidean distance for variances and covariance 

matrices). Since it did not work well, we have developed complex instruments in order to 

replace the malfunctioning ruler (spatial filters and other matrix decomposition methods). 

Finally, we have found a valid ruler (the Riemannian metric for SPD matrices) and we can 

now come back to the simple concept of measuring distances between observables for 

classifying BCI data. Riemannian geometry provides the natural framework to treat 

symmetric positive-definite matrices and many kind of structured covariance matrices are of 

this type. It does not matter how the covariance matrices are defined, the MDM Riemannian 

classifier remains the same for all the three BCI modalities, namely, motor/mental imagery, 

event-related potentials and steady state evoked potentials. Defining appropriate covariance 

matrices embedding relevant information depending on the data in the BCI field is the task of 

brain scientists, linking electrophysiological knowledge to mathematical formalism. Formal 

definitions for the three main BCI modalities are given in Appendix I. These definitions can 

be improved and further research on this topic is expected.  

A distinctive approach of the Riemannian MDM algorithm is that at no point there is a 

parameter to be tuned; it is all deterministic and completely parameter-free. This is in contrast 

with more sophisticated machine learning approach such as support vector machine, where 

one or more parameters must be optimized, typically, by cross-validation [55]. For this reason 

we claim that the MDM approach can be used purposefully in all BCI modalities; In fact, 

taken together its simplicity, its ability to learn rapidly (with little training data), its good 

cross-subject and across-session generalization, it suits well real-world BCIs according to 

requirements a)-h) listed in the introduction.  

Most research on BCI signal processing still today proceeds by improving spatial filters [75, 

140, 141], thus we may say that since the inceptions of the CSP more than 15 years ago, the 

first major paradigmatic shift that has been operated in the BCI arena has been the 
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introduction of Riemannian geometry. We have observed that refinements of spatial filters 

bring upon only moderate improvement for classification purposes and that such improvement 

does not translate easily in a significant increase of reliability and robustness. In fact, a spatial 

filter is by its very nature highly specific to the data on which it has been estimated, that is to 

say, it is intrinsically subject- and session-specific, which jeopardizes its robustness and 

constitutes a major limit to achieve effective transfer learning. Nonetheless, the CSP and 

related methods are efficient option in a classical test-training mode of operation, as more 

than 15 years of practice has demonstrated. 
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Appendix I 

For all BCI modalities we work in practice with trials, which are time-windows of EEG data. 

We indicate them by Xz, with z{1,..,Z} the index of Z classes. Trials Xz are N·T EEG data 

matrices, where N is the number of electrodes and T the number of samples. The MDM works 

in the same way for all BCI modalities, however, for each of them the way covariance 

matrices are defined differs. In fact, the performance of the MDM depends on our ability to 

capture all relevant information related to the task in the form of a positive matrix. In this 

appendix we detail appropriate covariance matrix definitions for the three main BCI 

modalities. Far from being exhaustive, these definitions can be further enriched and improved. 

In the sequel, the definitions are the same for the training trials and for the test trials; once 

obtained positive matrices from the available trials, one can compute the geometric mean of 

each class on training data and measure distances of unlabeled trials to these means.  

 

Classification of Motor/Mental Imagery 

The sample covariance matrix of trial Xz is 
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  
1

1

T
z z z

T



C X X . (21) 

The diagonal elements hold the variance of the signal at each electrode and the off-diagonal 

elements hold the covariance between all electrode pairs. The sample covariance matrix 

contains all spatial information, particularly, its second order statistics. If the data are 

centered (zero mean) and they follows a multivariate Gaussian distribution, those statistics 

describe the spatial process exhaustively. Sample covariance matrices suffice for classifying 

motor/mental imagery (MI) trials because MI trials for different classes do indeed produce a 

different scalp spatial pattern [142]. Then for MI we just use definition (21). The only other 

pre-processing step requested is filtering the data in the frequency band pass regions involved 

in the task, for example, for motor imagery, 8-30 Hz, in order to reduce noise. If several 

frequency band-pass regions are of interest, one can estimate the geometric mean for each 

region separately and then sum the (squared) distance obtained in all regions, a procedure we 

will encounter for the case of steady state evoked potentials.  

 

Classification of Event-Related Potentials (ERPs) 

For ERP-based BCI the sample covariance matrix (21) is not efficient since ERPs feature 

amplitude much smaller as compared to the background EEG, thus the spatial structure 

contained in the covariance matrix of a single trial does not hold sufficient information for 

classification. As a matter of fact the sample covariance matrix (21) does not contain any 

temporal information at all, which is easily realized if we consider that shuffling at random 

the samples of trial Xz the sample covariance matrix (21) is unchanged. However ERPs have a 

specific time signature; it is this signature that differentiates an ERP from another or an ERP 

from the absence of the ERP, so this is the information we need to extract and embed in a 

“covariance matrix”. In order to do so let us consider again trials Xz, for z{1,…,Z} classes 

(Single-trial ERPs). In this case each class corresponds to a different ERP and a no-ERP class 

is usually added. For example, in P300-based BCI, one class is the target class, containing a 

P300, and the other is the non-target class (Z=2). Let us now construct the super-trial 
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 

 

1

 

 

ERP
z

Z

z

 
 
 

  
 
  
 

X

X
X

X

N(Z+1)xT,         (22) 

where    1
,   ,T T

Z
X X  are the ensemble average ERPs obtained on the training data, on 

previous sessions of the user or even on a database of other users (transfer learning using a 

grand average). Note that we have introduced index (z) in parenthesis to highlight the 

difference with the zth training class of the trial Xz. We call the averages in Eq. (22) the 

temporal prototypes. An appropriate method for estimating them when ERPs overlap, which 

is usually the case in BCI systems, is described in [143]. Because of the invariance by 

congruence, theses temporal prototypes can be estimated in the sensors space or in the source 

space without any loss of performance. For instance, a principal component analysis can be 

applied to a grand average, retaining only a few components, with ensuing computational 

advantage. We specify a prototype for each class. Now, for a training trial Xz the covariance 

matrix of the super-trial has the following block structure: 

 
    

 . . .1 1

1 1 .

T
T T

T
zERP ERP

z z z
T T

z z z
T T

 
  
  
 

X X X X
C X X

X X X X

N(Z+1)x N(Z+1),   (23) 

where 

       

       

1 1 1

1

 

. .    

T T

Z

T

T T

Z Z Z

 
 
 
 
 
 

X X X X

X X

X X X X

 NZxNZ       (24) 

and      1
.  , ,  T T T

z z z Z
X X X X X X NxNZ.        (25) 

Let us take a close look to the structure of this covariance matrix: 

The NxN diagonal blocks of . .TX X in (23) - see (24) for the relevant expansions - hold the 

covariance matrices of the Z temporal prototypes and its NxN off-diagonal blocks their cross 

covariance. All these blocks are not useful for classification since they, being based on fixed 

prototypes, do not change from trial to trial.  
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The NxN block T
z zX X in (23) holds the sample covariance matrix (21) of the trial Xz, which 

contains the spatial information of the trial and will be little useful for classification, as we 

have said.  

The NxN blocks of .T
zX X  in (23) - see (25) for the relevant expansion - contains the cross-

covariances between the trial and the Z prototypes, that is, these blocks contain the temporal 

covariances. Notice that shuffling the samples of the trial now does disrupt these covariances. 

These blocks contain the relevant information for classification as the cross-covariance will 

be large only in the blocks where the class of the trial coincides with the class of the 

prototype. The only other pre-processing required is to filter the data in the frequency band 

pass region containing the ERPs, typically 1-16 Hz, so as to reduce noise.  

It is worth mentioning that often we deal only with the presence and absence of an ERP, as it 

is the case of P300-bases BCIs, where there are only two classes, a target (P300 present) and 

non-target (P300 non-present) class. In this case one can equivalently use a simplified version 

of super-trial (22) given by 

 300
 

P
z

z


 
 
 
 

X
X

X
2NxT,         (26) 

where    
T


X is the temporal prototype of the P300 (target class). 

Finally, notice that in typical P300-based BCIs such as spellers we classify after several ERPs 

have been collected, that is, after several repetitions of exhaustive flashing of all elements. 

The classification then is based either on the cumulating sum of (squared) distances across 

repetitions or on a single distance obtained on the average trial computed across repetitions, 

the two approaches being equivalent. 

 

Classification of Steady-State Evoked Potentials 

We make here the example of steady-state visually evoked potentials (SSVEP). The Z classes 

here represent F different flickering frequencies and a no-flickering class can be added as 

well, if sought. In this case the relevant information is the diversity of the frequencies 
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engendering oscillations in the visual cortex, while the spatial pattern may be the same for 

different frequencies. In order to exploit the frequency diversity we construct super trial 

 

 

1

 SSEP
z

F

 
 
 
 
 
 

X

X

X

NFxT         (27) 

where 
 
T

f
X is the trial filtered in the band-pass region for flickering frequency f{1,…,F}. 

The covariance matrix of super-trial (27) has the following block structure: 

 
 

 

       

       

1 1 1

1

1 1

1 1

T T

F
T

SSEP SSEP
z z z

T T

F F F

T T

 
 

    
     

 
 

X X X X

C X X

X X X X

NFxNF.   (28) 

The NxN diagonal blocks holds the covariance matrices of the F frequencies. When 

comparing an unlabeled trial with the mean of the different classes, only the mean with the 

block indexing the frequency corresponding to the frequency of the trial will have large 

values (see [58]). Thus the diagonal blocks will be useful for classification. On the other hand 

the off-diagonal blocks hold the cross-covariance between frequencies, thus are not 

meaningful. We can put them to zero since the resulting matrix  

 

   

   

1 1

1

1

T

z

T

F F

T

 
 
 

  
 
 

X X 0

C

0 X X

 NFxNF      (29) 

is still symmetric positive definite. Note that these blocks can be estimated simply by the 

Fourier cospectra [58, 144] corresponding to the flickering frequencies. Therefore, the only 

pre-processing required is either to filter the data in the frequencies corresponding to the 

SSVEP flickering frequencies and then compute (29) or, equivalently, estimating the blocks 

of (29) directly by the Fourier cospectra at the F flickering frequencies. Note that if the phase 

of the SSVEP is known thanks to precise data tagging, as it is done in [32], or code 

modulation is used [33], one can exploit both the frequential and the temporal information, 

constructing a super trial mixing the strategy used here for ERP (22) and for SSVEP (27). 

Finally, note that when covariance matrices have a block-diagonal structure as in (29), it is 
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easy to show that the Riemannian (squared) distance between two of them equals the sum of 

the Riemannian (squared) distance obtained on each diagonal block separately. Similarly, the 

geometric mean of a set of block-diagonal matrices can be more easily formed by the 

geometric means of the blocks. This greatly speed up computation when the number of blocks 

(frequencies in this case) is large. 

 

Appendix II: Open Source Code Resources for Riemannian Geometry 

Implementations for all concepts and methods found in this document are freely available as 

part of two open-source toolboxes written by author A.B.: Covariance Toolbox14 for the 

programming language Matlab and pyRiemann15 for the programing language Python. They 

share a common core of methods allowing the replication of the authors’ work. The Python 

toolbox pyRiemann offer more flexibility and support. Specifically, in addition to support 

parallelization for efficient computing, pyRiemann’s API is compatible with the popular 

machine learning library Scikit-Learn16, allowing to pipeline any of the Riemannian methods 

with the most advanced classification and regression algorithms available to date (such as 

random forest, eXtreme gradient boosting or deep learning). In addition to the Riemannian 

metric, these toolboxes support several other metrics adapted to manipulation of positive 

matrices. Also, code source to reproduce the results achieved in the five international 

predictive modeling challenges (table 1) are available on the github account of author A.B.17. 

 

                                                           
14 https://github.com/alexandrebarachant/covariancetoolbox 

15 https://github.com/alexandrebarachant/pyRiemann 

16 http://scikit-learn.org/stable/ 

17 https://github.com/alexandrebarachant 

  

https://github.com/alexandrebarachant/covariancetoolbox
https://github.com/alexandrebarachant/pyRiemann
http://scikit-learn.org/stable/
https://github.com/alexandrebarachant


37 

 

References 

[1] Allison BZ, Dunne S, Leeb R, Millán JdR, Nijolt A. Toward Practical Brain-Computer Interfaces (Eds.), 

London: Springer; 2012. 

[2] Schomer DL, Lopes da Silva F. Niedermeyer's Electroencephalography: Basic Principles, Clinical 

Applications, and Related Fields, Sixth Edition, Philadelpjia (PA): Lippincott Williams & Wilkins; 2011. 

[3] Kübler A, Kotchoubey B, Kaiser J, Wolpaw JR, Birbaumer N. Brain-computer communication: unlocking 

the locked in. Psycholog Bull. 2001;  127(3): 358-75. 

[4] Tan DS, Nijholt A. Brain-Computer Interfaces (Eds.). London: Springer; 2012. 

[5] Wolpaw J, Wolpaw EW. Brain-Computer Interfaces: Principles and Practice. Oxford: Oxford University 

Press; 2012 

[6] Chaudhary U, Birbaumer  N. Communication in locked-in state after brainstem stroke: a brain-computer-

interface approach. Ann Transl Med. 2015; 3 (S1), S29. 

[7] Curado MR, Cossio EG, Broetz D, Agostini M, Cho W, Brasil FL, et al. Residual Upper Arm Motor 

Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface 

(BMI) Training. PLoS ONE. 2015; 10(10): e0140161. 

[8] Li Y, Nam CS. Evaluation of collaborative brain-computer interface for people with motor disabilities 

IEEE Comput Intell Mag. 2016; 11: 56-66. 

[9] McCane LM, Heckman SM, McFarland DJ, Townsend G, Mak JN, Sellers EW, et al. P300-based brain-

computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis 

(ALS) vs. age-matched controls. Clin Neurophysiol. 2015; 126(11): 2124-31.  

[10] Münβinger JI, Halder S, Kleih SC, Furdea A, Raco V, Hӧsle A, Kübler A. Brain painting: first evaluation 

of a new brain-computer interface application with ALS-patients and healthy volunteers. Front Neurosci. 

2010; 4: 1-11. 

[11] Salisbury D, Driver S, Parsons TD. Brain-computer interface targeting non-motor functions after spinal 

cord injury. Spinal Cord. 2015; 53: S25-S26.  

[12] Sellers EW, Donchin E. A P300-based brain-computer: initial tests by ALS patients. Clin Neurophysiol. 

2006; 117(3): 538-548. 

[13] Riccio A, Mattia D, Simione L, Olivetti M, Cincotti F. Eye-gaze independent EEG-based brain-computer 

interfaces for communication. J Neural Eng. 2012; 9(4): 045001. 

[14] Volosyak I, Cecotti H, Valbuena D, Gräser A. Evaluation of the Bremen SSVEP based BCI in real world 

conditions. Proc. of IEEE 11th Int. Conf. on Rehabilitation Robotics; 2009 Jun 23-26. Kyoto, Japan: 322-

331. 

[15] Käthner I, Kübler A, Halder S. Comparison of eye tracking, electrooculography and an auditory brain-

computer interface for binary communication: a case study with a participant in the locked-in state. J 

Neuroeng Rehabil. 2015; 12: 76.  

[16] Mayaud L, Cabanilles S, Van Langhenhove A, Congedo M, Barachant A, Pouplin S, et al. Brain-

computer interface for the communication of acute patients: a feasibility study and a randomized 

controlled trial comparing performance with healthy participants and a traditional assistive device, BCI, 

2016, 3(4): 197-215. 

[17] Lee J-H, Lim J-H, Han C-H, Kim Y-W Im C-H. Global EEG synchronization as an indicator of emotional 

arousal and its application for tracking emotional changes during video watching, Proc. Of the 6th Int. BCI 

Conf.; 2014 Sept 16-19. Graz, Austria. 

[18] Lau TM, Gwin JT, McDowell KG, Ferris DP. Weighted phase lag index stability as an artifact resistant 

measure to detect cognitive EEG activity during locomotion. J Neuroeng Rehabil. 2012; 9: 47. 

[19] Allison BZ, Pineda JZ. ERPs Evoked by Different Matrix Sizes: Implications for a Brain Computer 

Interface (BCI) System. IEEE Trans Neural Syst Rehabil Eng. 2003; 11 (2): 110-113. 

[20] Guan C, Thulasidas M, Wu J. P300 Speller for Brain-Computer Interface. Proc. of the IEEE Int. 

Workshop on Biomedical Circuits & Systems. 2004 Dec 1-3: S3/5/INV- S3/13-16. 

[21] Li Y, Bahn S, Nam CS, Lee J. Effects of luminosity contrast and stimulus duration on user performance 

and preference in a P300-based brain-computer interface (BCI). Int J Hum Comput Interact. 2014; 30: 

151-163. 

[22] Li Y, Nam CS, Shadden BB, Johnson SL. A P300-Based Brain-Computer Interface (BCI): Effects of 

Interface Type and Screen Size. Int J Hum Comput Interact. 2010; 27: 52-68. 

[23] Mainsah BO, Collins LM, Colwell K, Throckmorton CS. Improving Dynamic Data Collection in P300 

Spellers With a Language Model. Proc. Fifth Int. BCI Meeting: 2013 June 3-7, Pacific grove, California. 

107. 



38 

 

[24] Kaufmann T, Völker S, Gunesch L, Kübler A. Spelling is just a click away – a user-centered brain-

computer interface including auto-calibration and predictive text entry. Front Neurosci. 2012; 6(72): 1-10 

[25] Kindermans P-J, Schrauwen B. Dynamic Stopping in a Calibration-less P300 Speller. Proc. Fifth Int. BCI 

Meeting; 2013 June 3-7, Pacific Grove, California. 075. 

[26] Pinegger A, Decker L, Halder S, Faller J, Käthner I, Wriessnegger SC et al. Automatic pause detection 

during P300 web browsing, Proc. 6th Int. BCI Conf.; 2014 Sept 16-19, Graz, Austria. 

[27] Congedo M, Goyat M, Tarrin N, Varnet L, Rivet B, Ionescu G, et al. “Brain Invaders”: a prototype of an 

open-source P300-based video game working with the OpenViBE platform. Proc of the 5th Int BCI 

Conference; 2011 Sept 22-24, Graz, Austria. 280-283. 

[28] Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang X, Neuper C. Optimized stimulus presentation 

patterns for an event-related potential EEG based brain-computer interface. Med Biol Eng Comput. 2011; 

49(2): 181-91. 

[29] Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, et al. A novel P300-based 

brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin 

Neurophysiol. 2010; 121(7): 1109-20.  

[30] Verhoeven T., Buteneers P, Wiersema JR, Dambre J, Kindermans PJ. Towards a symbiotic brain-

computer interface: exploring the application-decoder interaction, J Neural Eng. 2015; 12: 066027. 

[31] Schreuder M, Höhne J, Blankertz B, Haufe S, Dickhaus T, Tangermann M. Optimizing event-related 

potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods. J Neural 

Eng. 2013; 10(3): 036025. 

[32] Jia C, Gao X, Hong B, Gao S. Frequency and phase mixed coding in SSVEP-based brain--computer 

interface. IEEE Trans Biomed Eng, 2011; 58(1): 200-206. 

[33] Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S. A high-speed BCI based on code modulation VEP. J 

neural eng. 2011; 8(2): 025015. 

[34] Tong J, Zhu D. Multi-phase cycle coding for SSVEP based brain-computer interfaces, Biomed Eng 

OnLine. 2015; 14: 5. 

[35] Kleih SC, Kübler A. Empathy, motivation, and P300 BCI performance. Front Hum Neurosci. 2013; 7 

(642); 00642.  

[36] Kasahara K, DaSalla CS, Honda M, Hanakawa T. Neuroanatomical correlates of brain-computer interface 

performance. NeuroImage, 2015; 110: 95-100. 

[37] Mayaud L, Congedo M, Van Laghenhove A, Orlikowski D, Figère M, Azabou E, et al. A comparison of 

recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm. 

Neurophysiol Clin, 2013; 43(4): 217-227. 

[38] Mayaud L, Filipe S, Petegnief L, Rochecouste O, Congedo M. Robust Brain-computer interface for 

virtual Keyboard (RoBIK): project results, IRBM, 2013; 34 (2): 131-138.  

[39] Nijboer F, Laar B, Gerritsen S, Nijholt A, Poel M. Usability of three electroencephalogram headsets for 

brain-computer interfaces: a within subject comparison. Interact comput. 2015; 27(5): 500-511.  

[40] Lin CT, Liao LD, Liu YH, Wang IJ, Lin BS, Chang JY. Novel dry polymer foam electrodes for long-term 

EEG measurement. IEEE Trans Biomed Eng. 2011; 58(5): 1200-7. 

[41] Barachant A, Andreev A, Congedo M. The Riemannian Potato: an automatic and adaptive artifact 

detection method for online experiments using Riemannian geometry. TOBI Workshop lV; 2013 Jan 23-

25. Sion, Switzerland. 19-20. 

[42] Sagha H, Perdikis S, Millán JdR, Chavarriaga R. Quantifying Electrode Reliability During Brain–

Computer Interface Operation. IEEE Trans Biomed Eng. 2015; 62(3): 858-864.  

[43] Powers JC, Bieliaieva K, Wu S, Nam CS. The Human Factors and Ergonomics of P300-Based Brain-

Computer Interfaces. Brain Sci. 2015; 5(3): 318-56.  

[44] Yuan P, Gao X, Allison B, Wang Y, Bin G, Gao S. A study of the existing problems of estimating the 

information transfer rate in online brain–computer interfaces, J neural eng. 2013; 10(2); 026014. 

[45] Bonnet L, Lotte F, Lécuyer A. Two Brains, One Game: Design and Evaluation of a Multi-User BCI Video 

Game Based on Motor Imagery, IEEE Trans Comput Intell AI, 2013; 5 (2): 185-198. 

[46] Korczowski L, Congedo M, Jutten C. Single-Trial Classification of Multi-User P300-Based Brain-

Computer Interface Using Riemannian Geometry. IEEE 39th Int Conference of IEEE Engineering in 

Medicine and Biology Society; 2015 Aug 25-29, Milano, Italy. 

[47] Korczowski L, Barachant A, Andreev A, Jutten C, Congedo M. “Brain Invaders 2”: an open source Plug 

& Play multiuser BCI videogame, Proc. of the 6th Int. Brain-Computer Interface Meeting; 2016 May 30 

June 3, Asilomar (CA), USA.. 

[48] Schultze-Kraft R, Görgen K, Wenzel M, Haynes J-D, Blankertz B. Cooperating Brains: Joint Control of a 

Dual-BCI. Proc. Fifth Int. BCI Meeting; 2013 June 3-7, Pacific grove(CA), USA. 046. 



39 

 

[49] Buccino AP, Keles HO, Omurtag A. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for 

Multiple Motor Tasks. PLoS ONE. 2016; 11(1): e0146610.  

[50] Lee JS, Park KS. A New Stimulation Method of Virtual Speller for Simultaneous P300 and SSVEP 

Responses. Proc. Fifth Int. BCI Meeting; 2013 June 3-7, Pacific Grove (CA), USA. 162 

[51] Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R et al. The Hybrid 

BCI, Front Neurosci. 2010; 4: 42.00003. 

[52] Brunner C, Birbaumer N, Blankertz B, Guger C, Kübler A, Mattia A, et al. BNCI Horizon 2020: towards 

a roadmap for the BCI community. Brain-Comput Interfaces. 2015; 2(1): 1-10. 

[53] Huggins J E, Guger C, Allison B, Anderson C W, Batista A, Brouwer A-M. Fifth Int. Brain-Computer 

Interface Meeting: Defining the Future; 2013 June 3-7. 1(1): 27-49. 

[54] Obeid I, Picone J. Bringing Big Data to neural Interfaces. Proc. Fifth Int. BCI Meeting, 2013 June 3-7, 

Pacific Grove (CA), USA. 180 

[55] Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-

based brain-computer interfaces, J Neural Eng. 2007; 4(2):. R1–R13. 

[56] Acqualagna L, Botrel L, Vidaurre C, Kübler A, Blankertz B. Large-Scale Assessment of a Fully 

Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface. PLoS ONE. 2016; 11(2): 

e0148886.  

[57] Colwell K, Throckmorton C, Collins L, Morton K. Transfer Learning for Accelerated P300 Speller 

Classifier Training, Proc. Fifth Int. BCI Meeting, 2013 June 3-7, Pacific Grove (CA), USA. 004. 

[58] Congedo M. EEG Source Analysis. HDR thesis presented at the University of Grenoble Alpes; 2013. 

[59] Herweg A, Kaufmann T, Kübler A. Using Generic Models to Improve Tactile ERO-BCI performance of 

Low Aptitude Users. Proc. Fifth Int. BCI Meeting, 2013 June 3-7, Pacific Grove (CA), USA. 097. 

[60] Jayaram V, Alamgir M, Altun Y, Scholkopf B, Grosse-Wentrup M. Transfer Learning in Brain-Computer 

Interfaces, IEEE Comput Intell Mag, 2016; 11 (1): 20-31. 

[61] Jin J, Sellers EW, Zhang Y, Daly I, Wang X, Cichocki A. Whether generic model works for rapid ERP-

based BCI calibration. J Neurosci Meth, 2012; 212: 94-99. 

[62] Kindermans P-J, Schreuder M, Schrauwen B, Müller K-R, Tangermann M. True Zero-Training Brain-

Computer Interfacing – An Online Study. PLoS ONE. 2014; 9(7): e102504.  

[63] Ray AM, Sitaram R, Rana M, Pasqualotto E, Buyukturkoglu K, Guan C, et al. A subject-independent 

pattern-based Brain-Computer Interface. Front Behav Neurosci. 2015; 9: 269. 

[64] Kindermans P-J, Verstraeten D, Schrauwen B. A Bayesian Model for Exploiting Application Constraints 

to Enable Unsupervised Training of a P300-based BCI. PLoS ONE. 2012; 7(4): e33758. 

[65] Panicker RC, Puthusserypady S , Sun Y. Adaptation in P300 Brain-Computer Interfaces: A Two-

Classifier Co-Training Approach”, IEEE Tran Biomed Eng. 2010; 57(12): 2927-35. 

[66] Schettini F, Aloise F, Aricò P, Salinari S, Di Mattia D, Cincotti F. Self-Calibration in an Asynchronous 

P300-Based BCI. Proc. Fifth Int. BCI Meeting, 2013 June 3-7, Pacific Grove (CA), USA. 124. 

[67] Mak JN, Arbel Y, Minett JW, McCane LM, Yuksel B, Ryan D, et al. Optimizing the P300-based brain-

computer interface: current status, limitations and future directions. J Neural Eng, 2011; 8(2): 025003. 

[68] Jrad N, Congedo M, Phlypo R, Rousseau S, Flamary R, Yger F, et al. sw-SVM : sensor weighting support 

vector machines for EEG-based Brain-Computer Interfaces. Journal Neural Eng. 2011: 8(5): 056004. 

[69] Bhatia R.  Positive Definite Matrices. Princeton (NJ): Princeton University press; 2007. 

[70] Levi-Civita T. Lezioni di Calcolo Differenziale Assoluto [Lessons of Absolute Differential Calculus], 

Roma, Italy: Alberto Stock; 1925. Italian. 

[71] Lotte F, Renard Y, Lécuyer A. Self-paced Brain-Computer Interaction with Virtual Worlds: a Quantitative 

and Qualitative Study ‘Out of the Lab’, 4th Int. Brain-Computer Interface Workshop and Training Course, 

2008: 373-378. 

[72] Solis-Escalante T, Müller-Putz G, Pfurtscheller G. Overt foot movement detection in one single Laplacian 

EEG derivation. J Neurosci Methods. 2008; 175(1): 148-53. 

[73] Graf AB, Bousquet O, Rätsch G, Schölkopf B. Prototype classification: insights from machine learning. 

Neural Comput. 2009; 21(1) : 272-300. 

[74] Legendre A-M. Nouvelles methods pour la determination des orbites des comètes; avec un supplement 

contenant divers perfectionnemens de ces methods et leure application aux deux comètes de 1805 [New 

methods for the determination of the orbits of comets ; with a supplement containing different 

improvements of these methods and their application to the two comets of 1805]. Paris, France : Courcier; 

1806. French. 

[75] Roijendijk L, Gielen S, Farquhar J. Classifying regularised sensor covariance matrices: an alternative to 

CSP. IEEE Trans Neural Syst Rehabil Eng. 2016; 24(8): 893-900. 



40 

 

[76] Fisher RA (1924) On a Distribution Yielding the Error Functions of Several Well Known Statistics. Proc. 

of the Int. Congress of Mathematics. Toronto, Canada; 2: 805–813. 

[77] Pfurtscheller G, Flotzinger D, Kalcher J. Brain-Computer Interface—a new communication device for 

handicapped persons. J of Microcomput Appl. 1993; 16 (3): 293-299. 

[78] Bhatia R. The Riemannian Mean of Positive Matrices. Ch 2 in Nielsen F. and Bhatia R. (Eds.) Matrix 

Information Geometry. London: Springer; 2013. 

[79] Moakher M. A differential geometric approach to the arithmetic and geometric means of operators in 

some symmetric spaces. SIAM J Matrix Anal Appl. 2005; 26(3): 735-747. 

[80] Moakher M, Batchelor PG. Symmetric positive-definite matrices: From geometry to applications and 

visualization. In: Visualization and Processing of Tensor Fields (Weickert J, Hagen H Eds.). London: 

Springer, 2006: 285-298. 

[81] Pennec X, Fillard P, Ayache N. A Riemannian Framework for Tensor Computing. Research Report 

#5255, INRIA, Sophie-Antipolis, France; 2004. 

[82] Nakamura N. Geometric means of Positive Operators, KYUGPOOK Math J, 2009: 167-181. 

[83] Sra S. A new Metric on the manifold of kernel matrices with application to matrix geometric means, NIPS 

Conference. 2012 Dec 3-8; Harrah’s Lake Tahoe (CA), USA: 1-9. 

[84] Arsigny V, Fillard P, Pennec X, Ayache N. Geometric means in a novel vector space structure on 

symmetric positive-definite matrices. SIAM J Matrix Anal Appl. 2007; 29(1): 328–347. 

[85] Anderson TW. An Introduction to Multivariate Statistical Analysis, 2nd ed.. New York (NY), USA: John 

Wiley & Sons; 1984. 

[86] Wilks SS. Multidimensional Statistical Scatter. In Collected Papers: Contributions to Mathematical 

Statistics (Anderson TW Eds). New York (NY), USA: John Wiley & Sons; 1967: 597–614. 

[87] Manton JH. A globally convergent numerical algorithm for computing the centre of mass on compact Lie 

groups. ICARCV Conference proc, 2004 Dec 6-9: 2211-2216. 

[88] Congedo M, Barachant A, Kharati Koopaei E. Fixed Point Algorithms for Estimating Power Means of 

Positive Definite Matrices, IEEE Trans Signal Process. 2017; 65(9): 2211–2220. 

[89] Comon P, Jutten C. Handbook of Blind Source Separation: Independent Component Analysis and 

Applications, Oxford (UK): Academic Press; 2010. 

[90] Congedo M, Gouy-Pailler C, Jutten C . On the blind source separation of human electroencephalogram by 

approximate joint diagonalization of second order statistics. Clin Neurophysiol. 2008; 119: 2677-2686. 

[91] Congedo M, Afsari B, Barachant A. Moakher M. Approximate Joint Diagonalization and Geometric 

Mean of Symmetric Positive Definite Matrices. PLoS ONE. 2005; 10(4): e0121423. 

[92] Lotte F, Guan CT. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and 

New Algorithms, IEEE Trans Biomed Eng. 2011; 58(2): 355-362. 

[93] Fukunaga F, Koontz W. Applications of the Karhunen-Loève expansion to feature selection and ordering. 

IEEE Trans Comput. 1970; 19(5): 311-318. 

[94] Koles ZJ. The Quantitative extraction and Topographic Mapping of the Abnormal Components in the 

Clinical EEG. Electroencephalogr Clin Neurophysiol. 1991; 79: 440-447. 

[95] Koles ZJ, Soong A. EEG Source Localization: Implementing the Spatio-Temporal Decomposition 

Approach. Electroencephalogr Clin Neurophysiol. 1998; 107: 343-352. 

[96] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal Spatial Filtering of single trial EEG during 

Imagined Hand Movement. IEEE Trans Rehabil Eng. 2000; 8(4): 441-446. 

[97] Huo X. A statistical Analysis of Fukunaga-Koontz Transform, IEEE Signal process Lett. 2004; 11(2): 

123-126. 

[98] Barachant A, Bonnet S, Congedo M, Jutten C. Riemannian Geometry Applied to BCI Classification. Proc. 

of Latent Variable Analysis and Signal Separation Conference, 2010 Sept 27-30. St. Malo, France; 6365: 

629-636  

[99] Yger F., Lotte F., Sugiyama M. Averaging covariance matrices for EEG signal classification based on the 

CSP: An empirical study. Int. EUSIPCO Conf., 2015 Aug 31-Sept 4, Nice, France: 2721-2725. 

[100] Fukunaga K. Statistical Pattern Recognition (2nd Eds). New York (NY), USA: Academic Press; 1990. 

[101] Schott JR. Matrix Analysis for Statistics. New York (NY), USA: John Wiley & Sons; 1997. 

[102] Barachant A, Bonnet S, Congedo M, Jutten C. Multi-Class Brain Computer Interface Classification by 

Riemannian Geometry, IEEE Trans Biomed Eng. 2012; 59(4): 920-928.  

[103] Xie X, Yu ZL, Lu H, Gu Z, Li Y. Motor Imagery Classification based on Bilinear Sub-Manifold Learning 

of Symmetric Positive-Definite Matrices. IEEE Trans Neural Syst Rehabil Eng. 2016; Epub ahead of 

print. 

[104] Li Y, Wong KM, de Bruin H, EEG Signal Classification Based on a Riemannian Distance Measure. IEEE 

Int. Conf. on Science and Technology for Humanity. 2009 Sep 26-27. Toronto, Canada: 268-273. 



41 

 

[105] Li Y, Wong KM, De Bruin H. EEG signals classification for sleep-state decision – A Riemannian 

geometry approach, IET Signal Process. 2012;  6(4): 288–299. 

[106] Li Y, Wong KM, Signal classification by power spectral density: An approach via Riemannian geometry, 

Proc. IEEE Stat. Signal Processing, 2012 Aug 5-8. Ann Arbor (MI), USA 

[107] Li Y., Wong K.M. de Bruin H. Electroencephalogram signals classification for sleep state decision - A 

Riemannian geometry approach, IET signal process. 2011; 6(4): 288-299. 

[108] Barachant A, Bonnet S, Congedo M, Jutten C. Common Spatial Pattern revisited by Riemannian 

Geometry. IEEE Int. Workshop on Multimedia Signal Processing, 2010 Oct 4-6; St-Malo, France: 472-

476. 

[109] Barachant A, Bonnet S, Congedo M, Jutten C. A Brain-Switch using Riemannian Geometry. 5th Int. 

Brain-Computer Interface Conf, 2011 Sept 22-24; Graz, Austria: 64-67. 

[110] Barachant A, Bonnet S, Congedo M, Jutten J. Classification of covariance matrices using a Riemannian-

based kernel for BCI applications. Neurocomput. 2013; 112: 172-178. 

[111] Barachant A, Congedo M, Van Veen G, Jutten C. Classification de potentiels évoqués P300 par géométrie 

riemannienne, GRETSI Proc., 2013 Sept 3-6, St. Malo, France.  

[112] Brandl S, Müller KR, Samek W.  Robust common spatial patterns based on Bhattacharyya distance and 

Gamma divergence, Proc. of the Int. Winter Workshop on Brain-Computer Interface, 2015 Jan 12-14; 

Jeongsun-Kun, South Korea: 1-4. 

[113] Samek W, Kawanabe M, Müller K-R. Divergence-based Framework for Common Spatial Patterns 

Algorithms, IEEE Rev Biomed Eng. 2014; 7: 50-72. 

[114] Samek W, Müller KR. Information geometry meets BCI. Proc. of the International Winter Workshop on 

Brain-Computer Interface, 2014 Feb 17-19; Jeongsun-Kun, South Korea: 1-4. 

[115] Samek W, Kawanabe M. Robust common spatial patterns by minimum divergence covariance estimator. 

Proc. of the Acoustics, Speech and Signal Processing Conference, 2014 May 4-9; Firenze, Italy. 

[116] Kalunga E, Chevallier S, Barthélemy Q. Data augmentation in Riemannian space for Brain-Computer 

Interfaces, ICML Workshop on Statistics, Machine Learning and Neuroscience, 2015 July 6-11; Lille, 

France. 

[117] Lindig-León C, Gayraud N, Bougrain L, Clerc M. Comparison of Hierarchical and Non-Hierarchical 

Classification for Motor Imagery Based BCI Systems. Proc. of the 6th Int. Brain-Computer Interface 

Meeting, 2016 May 30-June 3; Asilomar (CA), USA. 

[118] Waytowich N, Lawhern V, Bohannon A, Lance B. Efficient Transfer Learning in Brain Computer 

Interfaces using Spectral Meta Learning. Proc. of the 6th Int. Brain-Computer Interface Meeting, 2016 

May 30-June 3; Asilomar (CA), USA. 

[119] Nasiri Ghosheh Bolagh S, Shamsollahi MB, Congedo M, Jutten C. Rank Of Subjects and Riemannian 

Geometry for Brain Signal Decoding Across Subjects, Proc. of the ESANN Conf., 2016 Apr 27-29, 

Bruges, Belgium. 

[120] Waytowich N, Lawhern V, Bohannon A, Ball KR, Lance B. Spectral Transfer Learning Using 

Information Geometry for a User-Independent Brain-Computer Interface, Front Neurosci. 2016; 10: 430. 

[121] Barachant A, Carmel JB, Friel KM, Gupta D. Extraction of motor patterns from joint EEG/EMG 

recording: A Riemannian Geometry approach. Proc. of the 6th Int. Brain-Computer Interface Meeting, 

2016 May 30 June 3, Asilomar (CA), USA. 

[122] Llera A, Gómez V, Kappen HJ. Adaptive classification on brain-computer interfaces using reinforcement 

signals. Neural Comput. 2012; 26: 1108-1127. 

[123] Uehara T, Tanaka T, Fiori F, Robust averaging of covariance matrices by Riemannian geometry for 

motor-imagery brain–computer interfacing, Proc. fifth Int. Conf. on Cognitive Neurodynamics. 2015 Jun 

3-7, Sanya, China: 347-353. 

[124] Yger F. A review of kernels on covariance matrices for BCI applications, IEEE Int. Workshop on 

Machine Learning for Signal Processing, 2013 Sep 22-25; Southampton, UK. 

[125] Yger F, Sugiyama M. Supervised LogEuclidean Metric Learning for Symmetric Positive Definite 

Matrices, arXiv:1502.03505; 2015. 

[126] Davoudi A, Ghidary SS, Sadatnejad K. Dimensionality reduction based on Distance Preservation to Local 

Mean (DPLM) for SPD matrices and its application in BCI. arXiv:1608.00514; 2016. 

[127] Horev I, Yger F, Sugiyama M. Geometry-Aware Principal Component Analysis for Symmetric Positive 

Definite Matrices. JMLR: Workshop and Conf. Proc. 2015; 45: 1–16. 

[128] Horev I, Yger F, Sugiyama M. Geometry-aware Stationary Subspace Analysis. arXiv: 1605.07785v1; 

2016.  

[129] Krivov E, Belyaev M. Dimensionality reduction with isomap algorithm for EEG covariance matrices. 4th 

Int. Winter Conf. on Brain-Computer Interface; 2016 Feb 22-24, Yongpyong, South Korea. 



42 

 

[130] Sadatnejad K, Ghidary SS. Kernel learning over the manifold of symmetric positive definite matrices for 

dimensionality reduction in a BCI application, Neurocomput. 2016; 179: 152-160. 

[131] Tanaka T, Uehara T, Tanaka Y. Dimensionality reduction of sample covariance matrices by graph Fourier 

transform for motor imagery brain-machine interface, IEEE Statistical Signal Processing Workshop, 2016 

Jun 26-29, Palma de Mallorca, Spain: 1-5. 

[132] Harandi MT, Salzmann M, Hartley R. From manifold to manifold: Geometry-aware dimensionality 

reduction for SPD matrices, European Conference on Computer Vision, 2014 Sep 6-12; Zurich, 

Switzerland: 17-32. 

[133] Harandi MT, Salzmann M, Hartley R. Dimensionality Reduction on SPD Manifolds: The Emergence of 

Geometry-Aware Methods, arXiv:1605.06182; 2017. 

[134] Alimardani F, Boostani R, B Blankertz. Presenting a Spatial-Geometric EEG Feature to Classify BMD 

and Schizophrenic Patients, Int J Adv Telecommun Electrotechnics Signals Syst. 2016; 5(2): 79-85. 

[135] Yuan S, Zhou W, Wu Q, Zhang Y. Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-

Based Sparse Representation. Int J Neural Syst. 2016; 26(3): 1650011. 

[136] Roy RN, Charbonnier S, Bonnet S. Detection of mental fatigue using an active BCI inspired signal 

processing chain. Proc. of the 19th World Congress of the Int. Federation of Automatic Control, 2014 Aug 

24-29, Cape Town, South Africa. 

[137] Navarro-Sune X, Hudson AL, De Vico Fallani F, Martinerie J, Witon A, Pouget P, et al. Riemannian 

geometry applied to detection of respiratory states from EEG signals: the basis for a brain-ventilator 

interface, arXiv:1601.03022; 2016. 

[138] Rutkowski TM. Data-Driven Multimodal Sleep Apnea Events Detection: Synchrosquezing Transform 

Processing and Riemannian Geometry Classification Approaches. J Med Syst, 2016; 40(7): 162.  

[139] Congedo M, Barachant A. A Special Form of SPD Covariance Matrix for Interpretation and Visualization 

of Data Manipulated with Riemannian Geometry, Proc. MaxEnt Conference, 2014 Sep 21-26, Amboise, 

France: 495. 

[140] Lu J, Xie K, McFarland DJ. Adaptive spatio-temporal filtering for movement related potentials in EEG-

based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2014; 22(4): 847-57 . 

[141] Treder M S, Porbadnigk A K, Shahbazi Avarvand F, Müller K R, Blankertz B. The LDA beamformer: 

Optimal estimation of ERP source time series using linear discriminant analysis. Neuroimage. 2016; 129: 

279-291. 

[142] Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: 

basic principles, Clin Neurophysiol. 1999; 110(11): 1842-57. 

[143] Congedo M, Korczowski L, Delorme A, Lopes Da Silva F. Spatio-Temporal Common Pattern; a 

Companion Method for ERP Analysis in the Time Domain. J neurosci methods. 2016; 267: 74–88. 

[144] Bloomfield P. Fourier Analysis of Time Series. New York: John Wiley & Sons; 2000. 


