
HAL Id: hal-01571232
https://inria.hal.science/hal-01571232

Submitted on 1 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximum flow under proportional delay constraint
Pierre Bonami, Dorian Mazauric, Yann Vaxès

To cite this version:
Pierre Bonami, Dorian Mazauric, Yann Vaxès. Maximum flow under proportional delay constraint.
Theoretical Computer Science, 2017, 689, pp.58-66. �10.1016/j.tcs.2017.05.034�. �hal-01571232�

https://inria.hal.science/hal-01571232
https://hal.archives-ouvertes.fr

Maximum flow under proportional delay constraint

Pierre Bonamia,b, Dorian Mazaurica,c, Yann Vaxèsa

aAix-Marseille Université, CNRS, LIF UMR 7279, 13000, Marseille, France.
bIBM ILOG CPLEX, Madrid, Spain.

cInria Sophia Antipolis - Méditerranée

Abstract

Given a network and a set of source destination pairs (connections), we consider the problem of maximizing the sum of
the flow under proportional delay constraints. In this paper, the delay for crossing a link is proportional to the total flow
crossing this link. If a connection supports non-zero flow, then the sum of the delays along any path corresponding
to that connection must be lower than a given bound. The constraints of delay are on-off constraints because if a
connection carries zero flow, then there is no constraint for that connection. The difficulty of the problem comes from
the choice of the connections supporting non-zero flow. We first prove a general approximation ratio using linear
programming for a variant of the problem. We then prove a linear time 2-approximation algorithm when the network
is a path. We finally show a Polynomial Time Approximation Scheme when the graph of intersections of the paths has
bounded treewidth.

Keywords: Maximum flow, on-off delay constraints, polynomial time approximation scheme (PTAS), dynamic
programming, bounded treewidth, linear programming.

1. Introduction

The multi-commodity flow problem is a classical network flow problem with multiple commodities (flow demands)
between different source and sink nodes. This problem has been widely studied in the literature. Given a network, a set
of capacities on edges, and a set of demands (commodities), the problem consists in finding a network flow satisfying
all the demands and respecting capacities and flow conservation constraints. The integer version of the problem is
NP-complete [6], even for only two commodities and unit capacities (making the problem Strongly NP-complete in
this case). In that version, the problem consists of producing an integer flow satisfying all demands and respecting the
previously mentioned constraints. However, if fractional flows are allowed, the problem can be solved in polynomial
time through linear programming [1, 4, 8].

Network operators must satisfy some Quality of Service requirements for their clients. One of the most important
parameters in telecommunications networks is the end-to-end delay of a unit of flow between a source node and a
destination node. This requirement is not taken into account in the multi-commodity flow problem. The delay through
a link depends on the amount of flow supported by this link; classically it is modeled by a convex function. The
end-to-end delay for a demand and a path associated with this demand, is the sum of the delays through all links of
this path. Some papers focus on minimizing the mean end-to-end delay. This problem consists of minimizing a convex
function under linear constraints [3, 9] and can be solved using semidefinite programming [12]. Other papers focus on
finding a multi-commodity flow that satisfies the demands and that minimizes the maximum end-to-end delay [5].

As the authors of [2], we think that a more realistic problem consists of adding strict end-to-end delay constraints
for all connections. Indeed, in communication networks, there are multiple classes of services, and for each of them,
it is crucial to respect a certain level of Quality of Service, i.e. respecting a threshold for the end-to-end delay. It is
why we study a multicommodity flow problem in which all demands have to respect an end-to-end delay constraint.

In this paper, we focus on multicommodity network flow problems in which each edge possesses a proportional
latency function that describes the common delay experienced by the flow on that edge as a function of the flow rate.
These problems model congestion effects that appear in a variety of applications such as communication networks,
vehicular traffic, supply chain management, or evacuation planning. In such applications, the latency function need

Preprint submitted to Theoretical Computer Science April 5, 2017

not be proportional to the flow rate. We investigate the problem of maximizing the sum of the flow under proportional
delay constraints. We allow fractional flows for all connections. As mentioned before, we have an end-to-end delay
constraint for each demand. But, if a path associated with one connection carries zero flow, then the constraint is not
active. These on-off constraints make the problem more difficult to solve than just a simple linear program [7].

In [2], it is proved that this problem is NP-hard even if there are only two paths per connection. In their proof,
delay and capacity constraints are used. The complexity of the problem is unknown when only considering delay
constraints. We formally present our problem in Section 1.1. We then describe a simple example in Section 1.2 and
preliminary results in Section 1.3. We present our contributions in Section 1.4.

1.1. Problem formulation and model
Let G = (V,E) be a connected undirected graph (that represents a network) with a coefficient αe for each edge

e ∈ E. Let {(s1, t1), . . . ,(sm, tm)} be a set of m source destination pairs (connections). Let P = {P1, . . . ,Pm} be a set of
m paths in G. For all i = 1, . . . ,m, Pi is the path, between the source si and the destination ti, allocated to connection
(si, ti). Without loss of generality, we suppose that there is a unique path for each connection. Indeed, we can have
several connections involving the same pair of nodes but with different associated paths. We denote by xi the flow
through the path Pi for all i = 1, . . . ,m. We suppose that the delay τe for crossing an edge e ∈ E is proportional to the
total flow ∑i:e∈E(Pi) xi crossing the edge e, i.e. τe = αe ∑i:e∈E(Pi) xi. Let λ > 0. For all i = 1, . . . ,m, we require for path
Pi that, if xi > 0, then the end-to-end delay ∑e∈Pi τe is at most λ. By scaling the coefficients of the αe, we can make
this bound λ equal to one. Using the notation βi, j := ∑e∈E(Pi)∩E(Pj) αe, these constraints can be written as follows:
∑

m
i=1 βi, jxi ≤ 1. A multicommodity flow x = (x1, . . . ,xm) is admissible if the following latency requirement is satisfied:

for all j = 1, . . . ,m such that x j > 0, then ∑e∈E(Pj) τe ≤ 1. Furthermore, for all i = 1, . . . ,m, if xi > 0, then we say that
connection (si, ti) and path Pi are active (inactive otherwise). The Maximum Flow under Delay Constraint problem
(FDC) consists in finding among the solutions satisfying these constraints a solution of maximum value ∑

m
i=1 xi, i.e.: Max ∑

m
i=1 xi

∑
m
i=1 βi, jxi ≤ 1 j = 1, . . . ,m x j > 0

xi ≥ 0 i = 1, . . . ,m.

The hardness of this problem comes from the choice of the active paths. Indeed, if we are given a set of active paths
P ∗ ⊆ P in some optimal solution, then the problem becomes polynomial since it reduces to solving the linear program
LP(P ∗). Without loss of generality let P ∗ = {P1, . . . ,Pm∗} with m∗ ≤ m.

LP(P ∗)

 Max ∑
m∗
i=1 xi

∑
m∗
i=1 βi, jxi ≤ 1 j = 1, . . . ,m∗

xi ≥ 0 i = 1, . . . ,m∗.

The dual of this linear program is:

DLP(P ∗)


Min ∑

m∗
j=1 y j

∑
m∗
j=1 βi, jy j ≥ 1 i = 1, . . . ,m∗

y j ≥ 0 j = 1, . . . ,m∗.

Note that LP(P ∗) and its dual DLP(P ∗) differ only by the sense of inequalities and the direction of optimization. In
particular, if the system of equations ∑

m∗
i=1 βi, jxi = 1, j = 1, . . . ,m∗, has a solution then this solution is optimal for the

primal and for the dual since it satisfies both primal and dual complementary slackness conditions.

1.2. Example
Consider the path G = (V,E) described in Figure 1 and the three source destination pairs (s1, t1), (s2, t2), and

(s3, t3). We set αe = 1 for all e ∈ E. FDC consists of solving:
Max x1 + x2 + x3

x1(3x1 +2x2)≤ x1
x2(2x1 +4x2 + x3)≤ x2
x3(x2 +2x3)≤ x3
x1,x2,x3 ≥ 0

2

s2s1 t3t2s3t1

Figure 1: Instance of FDC: path G = (V,E) with αe = 1 for all e ∈ E, and three source destination pairs (s1, t1), (s2, t2), and (s3, t3).

The first constraint means that, if the path P1 is active, then the end-to-end delay for connection (s1, t1) must be at
most one. The delay for crossing the leftmost edge of P1 is x1. The delay is x1 + x2 for each of the two other edges.
Thus, if x1 > 0, then 3x1 + 2x2 ≤ 1. Note that if x1 = 0, the first constraint is always satisfied. The second and the
third inequalities are constructed similarly. One can observe that x∗ = (1/3,0,1/2) is the optimal solution. Note that
connection (s2, t2) is inactive, i.e. x2 = 0, and so the second constraint is satisfied. That explains why the end-to-end
delay 2x1 +4x2 + x3 = 7/6 > 1 for connection (s2, t2) is not satisfied.

1.3. Preliminaries

We first prove in Lemma 1 that we can consider instances such that the path of a connection is not included in a
path of another connection (but the paths may intersect).

Lemma 1. Let I be an instance of FDC. If there are two different connections Pj and Pk such that E(Pk)⊆ E(Pj), then
there is an optimal solution x∗ such that x∗j = 0.

Proof. Consider any admissible flow x for I such that x j > 0. We construct another admissible flow x′ from x in which
we only change the amount of flow for paths Pj and Pk. More precisely, we set x′k := xk + x j, x′j := 0, and x′i := xi for
all i ∈ {1, . . . ,m}\{ j,k}. Clearly, the total amount of flow is unchanged, i.e. ∑

m
i=1 xi = ∑

m
i=1 x′i. Let τ and τ′ denote the

vector of delay for x and x′, respectively. By construction of x′, we get τ′e ≤ τe for all e∈ E because E(Pk)⊆ E(Pj). As
x is an admissible flow, then it follows that ∑e∈E(Pi) τ′e ≤ 1, for all i = 1, . . . ,m. Thus, the vector of flow x′ is admissible.
To conclude, if x is an optimal solution, then x′ is an optimal solution such that x′j = 0.

By Lemma 1, we only consider instances such that E(Pk) 6⊆ E(Pj) for all j,k ∈ {1, . . . ,m}, j 6= k.
Let us define the graph H of intersections of the paths of an instance of FDC. The set of nodes V (H) = {h1, . . . ,hm}

corresponds to the set of paths P = {P1, . . . ,Pm}. For i, j ∈ {1, . . . ,m}, i 6= j, there is an edge {hi,h j} ∈ E(H) between
two nodes hi ∈ V (H) and h j ∈ V (H) if, and only if, there exists e ∈ E such that e ∈ E(Pi)∩E(Pj), i.e. when Pi and
Pj share at least one edge. The graph H of intersections of the paths of the instance depicted in Figure 1 is a path
composed of three nodes. Without loss of generality, we assume that the graph H is connected. Indeed, if H is not
connected, we can consider the maximal connected components of H as independent instances of FDC.

1.4. Contributions

The complexity of FDC is still unknown but we conjecture that it is very hard to solve even for simple classes
of instances. In this context, we make the following contributions. In Section 2, we prove a general polynomial
approximation algorithm and a polynomial L-approximation algorithm, where L is the size of a longest path of P . In
Section 3, we prove a linear time 2-approximation algorithm when G is a path. In Section 4, we prove a Polynomial
Time Approximation Scheme (PTAS) when the graph H of intersections of the paths has bounded treewidth.

2. Approximation algorithms using linear programming

This section is dedicated to prove approximation algorithms for FDC based on a variant of the problem, called
Maximum Flow under Strong Delay Constraint problem (FSDC), for which all the end-to-end delay constraints must
be satisfied even for inactive connections. This problem is polynomial since it reduces to solving the linear program
LP(P), i.e. LP(P ∗) previously described when replacing P ∗ by P and m∗ by m. Note that an admissible solution
for FSDC is an admissible solution for FDC because the end-to-end delay constraints are satisfied for all (active and
inactive) connections in FSDC. Consider the example of Figure 1. One can observe that x = (1/4,0,1/2) is an optimal

3

solution for this variant of the problem. Such a solution for FSDC obtained by solving LP(P) is close to the optimal
solution x∗ for FDC. Indeed, (x∗1 + x∗2 + x∗3)/(x1 + x2 + x3) = 10/9.

We first analyze the ratio between the value of an optimal solution for FSDC and the value of an optimal solution
for FDC. We then deduce some polynomial approximation algorithms for FDC based on the solution of the linear
program LP(P) for FSDC (Theorem 3 and Corollary 1). Let us first define some parameters and prove Lemma 2.

Definition 1. For all k = 1, . . . ,m, let S∗k ⊆ {1, . . . ,m}\{k} be a maximum cardinality set of indices such that for all
i ∈ S∗k , there exists e ∈ E(Pk)∩E(Pi) such that for all j ∈ S∗k \{i}, e /∈ E(Pj). Let |S∗|= maxi=1,...,m |S∗i |.

Intuitively, S∗k is a maximal set of (indices of) paths that each have a ”private” edge in common with Pk (i.e. an
edge not shared with another path).

Lemma 2. Let I be any instance. Let x∗ be an optimal solution for FDC and let x be an optimal solution for FSDC.
Then ∑

m
i=1 xi ≥ ∑

m
i=1 x∗i /|S∗|.

Proof. Recall that if x∗k > 0, then ∑e∈E(Pk) τ∗e ≤ 1. We first prove that if x∗k = 0, then ∑e∈E(Pk) τ∗e ≤ |S∗k |. Let Pk be a path
such that x∗k = 0. Consider a minimal (by inclusion) set of active paths S ⊆ P that covers all edges of Pk supporting
non-zero flow. By definition of S∗k , |S| ≤ |S∗k |. Assign to each edge e ∈ E(Pk) supporting non-zero flow, a path Pi, i ∈ S
such that e ∈ Pi. For each i ∈ S, let Ei be the set of edges assigned to the path Pi. Since x∗i > 0, ∑e∈Ei τ∗e ≤ 1, i.e. the
sum of the delays on the edges of Ei is at most 1. There are |S| groups of edges, and thus ∑e∈E(Pk) τ∗e ≤ |S| ≤ |S∗k |, i.e.
the total delays on the edges of Pk is at most |S∗k |.

For all k ∈ {1, . . . ,m} such that x∗k = 0, then ∑e∈E(Pk) τ∗e ≤ |S∗k |. Consider the solution x′ obtained by dividing all the
flows of x∗ by |S∗|. Formally, set x′i := x∗i /|S∗| for all i = 1, . . . ,m. By construction, ∑

m
i=1 x′i = ∑

m
i=1 x∗i /|S∗|. By previous

claims, x′ is an admissible solution for FSDC. Finally, an optimal solution x for FSDC satisfies ∑
m
i=1 xi ≥ ∑

m
i=1 x′i.

Because FSDC is polynomial and by Lemma 2, we deduce the following theorem:

Theorem 3. There exists a polynomial |S∗|-approximation algorithm for FDC.

Let k ∈ {1, . . . ,m} such that |E(Pi)|= L, where L = maxi=1,...,m |E(Pi)| be the size of a longest path. By definition,
S∗k is a maximal set of paths for which there exists at least one edge that is not shared with another path (of S∗k). We
get that |S∗| ≤ L. Indeed, the number of ”private” edges cannot be greater than the number of edges of the path. We
deduce the following corollary of Theorem 3:

Corollary 1. There exists a polynomial L-approximation algorithm for FDC, where L = maxi=1,...,m |E(Pi)|.

Finally, when the graph G is a path, one can observe that |S∗| ≤ 2. Indeed, by Lemma 1, we assume that any
path (of a connection) is not included in another path, and so S∗k is composed of at most two paths (”located” in
both extremities) for every k ∈ {1, . . . ,m}. Thus, there is a polynomial 2-approximation algorithm. For such class of
instances, we prove in Section 3 a stronger result (in terms of complexity), namely a linear 2-approximation algorithm
for FDC.

3. Linear time 2-approximation algorithm when G is a path

This section is dedicating to proving another polynomial 2-approximation algorithm when the graph is a path. The
interest of this algorithm is its linear time complexity. A solution x of FDC is said to be independent if its support {Pk :
xk > 0} is a family of edge-disjoint paths. In other words, x is independent if the set of vertices {hk : xk > 0} ⊂V (H)
forms an independent set of H. Recall that the graph H is the graph of intersections of the paths. We prove in Lemma 4
that a best independent solution has a value which is at least half the total flow of an optimal solution if G is a path.
Note that x = (1/3,0,1/2) is the best independent solution for the instance depicted in Figure 1 (that coincides in that
case to the optimal solution of FDC). In the following, we consider that H is node-weighted. For all i = 1, . . . ,m, the
weight whi (or simply denoted wi) of the node hi ∈V (H) represents the maximum amount of flow that can support the
path Pi if the paths sharing an edge with Pi do not carry any flow. Formally, wi := 1/∑e∈E(Pi) αe.

4

Lemma 4. Let I be any instance and let G be any path. Let x∗ be an optimal solution and let x be a best independent
solution for FDC. Then ∑

m
i=1 xi ≥ 1

2 ∑
m
i=1 x∗i . There exists a linear time 2-approximation algorithm for FDC when G is

a path.

Proof. Consider an optimal solution x∗ of an instance I and the instance I′ obtained from I by removing all source-
destination pairs that do not belong to the support of x∗. Since instances I and I′ have the same optimum and an
independent solution for I′ is also an independent solution for I, it suffices to prove the claim of lemma 4 for I′. For the
instance I′, there is an optimal solution in which all delay constraints are active. This solution is therefore an optimal
solution of the linear program LP(P ∗) where P ∗ := {Pi : x∗i > 0} and its value is at most the value of any feasible
dual solution y of DLP(P ∗). Without loss of generality let P ∗ = {P1, . . . ,Pm∗} with m∗ ≤ m. Let xI′ be an optimal
independent solution of I′, we will show that there exists a feasible solution yI′ of DLP(P ∗) whose value is at most
twice the value of xI′ .

Since G is a path, the graph H of intersections of the paths is an interval graph. Let C be the set of maximal
cliques of H. Since H is perfect, from the theory of perfect graphs (see for instance Chapter 65 of [11]), the caracter-
istic vector z of a maximum weighted independent set is an optimal solution of the following linear program LPQ(P ∗):

(LPQ(P ∗))

 Max ∑
m∗
i=1 wizi

∑i:hi∈C zi ≤ 1 ∀C ∈ C
zi ≥ 0 i = 1, . . . ,m∗.

Consider the dual (DLPQ(P ∗)) of this linear program :

(DLPQ(P ∗))

 Min ∑C∈C tC
∑C:hi∈C tC ≥ wi i = 1, . . . ,m∗

tC ≥ 0 ∀C ∈ C .

Let t be an optimal solution of DLPQ(P ∗). The following algorithm computes from t, a feasible solution y of DLP(P ∗).
Let C ∈ C , we denote l(C) (resp. r(C)) the index of the leftmost (resp. rightmost) path such that its corresponding
node in H belongs to the clique C. For all i = 1, . . . ,m∗ do yi := 0, and for all C ∈ C do yl(C) := yl(C) + tC and
yr(C) := yr(C)+ tC. Since the value of each variable tC for C ∈ C is added to exactly two variables y j, j = 1, . . . ,m∗, the
value of y is at most twice the value of t.

For all i= 1, . . . ,m∗, if e∈E(Pi) the following inequality holds: ∑ j:e∈E(Pj) y j ≥∑C:hi∈C tC ≥wi. Since t is a feasible
solution of DLPQ(P ∗), the second inequality is trivially true. In order to verify the first inequality, note that if the
node hi corresponding to the path Pi belongs to the clique C then e ∈ E(Pi) implies that e ∈ E(Pl(C)) or e ∈ E(Pr(C)).
Thus, if a clique C contributes tC for the second sum then yl(C) or yr(C) contribubes tC for the first one. We conclude
that, for all paths i = 1, . . . ,m∗, ∑e∈E(Pi) αe(∑ j:e∈E(Pj) y j)≥ ∑e∈E(Pi) αewi = wi ∑e∈E(Pi) αe = 1.

This shows that y is a feasible solution of DLP(P ∗). By the definition of y, its value is at most twice the weight of
a maximum weight stable set S of H. The independent solution corresponding to S is thus a 2-approximation for the
instance I′.

To conclude the proof, computing an optimal independent solution when G is a path reduces to compute a maxi-
mum weighted independent set of H and so we get the linear time complexity because H is an interval graph.

Note that we cannot find a similar result when the graph G is a tree. Indeed, a best independent solution may
be arbitrarily far from an optimal solution for this class of graphs. As an example, consider the instance depicted
in Figure 2. The graph G is a tree composed of m edge disjoint paths between v and the leaves ti, 1 ≤ i ≤ m, each
composed of m edges, and there is an edge between s and v. There are m≥ 1 source destination pairs (s, t1), . . . ,(s, tm).
For every i ∈ {1, . . . ,m}, we denote by Pi the path corresponding to connection (s, ti). For every edge e ∈ E \ {s,v},
then αe = 1, and αs,v = 1/m. Since {s,v} ∈ E(Pi) for every i ∈ {1, . . . ,m}, then any independent solution contains at
most one active path and the total amount of flow is at most m/(m2 + 1). Furthermore, if xi = 1/(1+m) for every
i ∈ {1, . . . ,m}, then x is an admissible solution for FDC such that the total amount of flow is m/(1+m).

Conjecture 1. Let k ≥ 1 be any constant integer and let Hk be the node-weighted graph constructed as follows. The
set of vertices is the family of all the subsets of at most k paths (connections), and there is an edge between two nodes
u and v if, and only if, there is at least one edge of G that belongs to one path of u and to one path of v. The weight

5

s v t 2

t 1

t m

Figure 2: Instance of FDC such that a best independent solution is arbitrarily far from an optimal solution. See details in the text.

e

cb

a

fd

a,b,c

b,c,e

c,e,fb,e,d

u 1

u 2

u 3 u 4

Figure 3: A graph H of intersections of the paths (left) and an optimal tree decomposition T of H with tw(T) = 2 (right).

of a node u is the amount of flow of an optimal solution of FDC reduced to the set of paths corresponding to u. We
conjecture that computing a maximum weighted independent set of Hk gives a ((k+ 1)/k)-approximation algorithm
when G is a path. Note that k = 1 corresponds to the polynomial 2-approximation algorithm proved in Lemma 4.

4. Polynomial Time Approximation Scheme for some classes

This section is dedicated to prove a Polynomial Time Approximation Scheme (PTAS) for FDC when the graph H
of intersections of the paths has bounded treewidth.

We first define a variant of the problem, called Maximum Discrete Flow under Delay Constraint problem (DFDC),
as follows. The only change is that the possible amount of flow for all connections is taken among a finite set of non
negative values containing zero. More formally, given a finite set X of non negative values containing zero, xi ∈ X
for all i = 1, . . . ,m. Consider the instance described in Figure 1 with X = {0,1/3,2/3,1}. One can observe that
x = (1/3,0,1/3) is an optimal solution for this variant of the problem.

In this section, we prove an exact dynamic programming algorithm for DFDC based on a tree decomposition of
H (Lemma 5). We then deduce a PTAS for FDC when the graph H of intersections of the paths has bounded treewidth
(Theorem 6).

A tree decomposition T of H, with set of nodes V (T) = {Y1, . . . ,Yn}, where each Yi is a subset of V (H), satisfies
the following properties. i) The union ∪n

i=1Yi of all sets Yi equals V (H). ii) If Yi and Yj both contain a vertex h ∈V (H),
then all nodes Yk of T in the (unique) path between Yi and Yj contain h as well. iii) For every edge {h,h′} ∈ E(H),
there is a subset Yi that contains both h and h′. The width of a decomposition is maxi=1,...,n |Yi|−1 and the treewidth
of H is the minimum width among all its possible tree decompositions.

Before formally proving Lemma 5, we give the intuition of the dynamic programming algorithm described in it.
Consider an instance of FDC for which the graph H of intersections of the paths is depicted in Figure 3 (left). The
tree T depicted in Figure 3 (right) is an optimal tree decomposition of H with tw(H) = 2. Consider any set X of
positive values containing 0. We now explain the computation of an optimal solution for DFDC based on the tree
decomposition.

1) Consider u3. The set of corresponding paths (connections) is {b,e,d}. The parent of u3 is u2. Paths b and e are

6

also in u2 while d is not in it. For every possible admissible vector of flows for {b,e}, we compute an optimal
flow for d. We obtain O(|X |2) vectors.

2) Consider u4. The set of corresponding paths is {c,e, f}. The parent of u4 is u2. For every possible admissible
vector of flows for {c,e}, we compute an optimal flow for f . There are O(|X |2) vectors.

3) Consider u2. The set of corresponding paths is {b,c,e}. The parent of u2 is u1. Paths b and c are also in u1 while
e is not in it. For every possible admissible vector of flows for {b,c}, we aim at computing an optimal flow for
{d,e, f}. To do that, for every possible admissible vector of flows for {b,c,e}, we compute an optimal flow for
{d, f} by using the computations done in 1) and 2).

4) Consider the root u1. The set of corresponding paths is {a,b,c}. For every possible admissible vector of flows
for {a,b,c}, we compute an optimal flow for {d,e, f} by using the computation done in 3).

5) We finally compute an optimal solution for DFDC by chosing an optimal vector among the set of vectors
computed in 4).

Lemma 5. Let I be any instance and let X be a finite set of non negative values containing zero. There exists an exact
O(m|X |tw(H)+1)-time complexity algorithm for DFDC where tw(H) is the treewidth of H.

Proof. Consider a tree decomposition T of H such that tw(H) = maxi=1,...,n |Yi|−1. Let t = tw(H)+1. Let r ∈V (T)
be the root (arbitrarily chosen) of the tree T . The set N(u) represents the children of u for all u∈V (T). Let du = |N(u)|.
The subtree Tu is the connected component of T containing u when removing the edge {u,u′} where u′ is the parent of
u, for all u ∈V (T)\{r}. Recall that the set of nodes V (H) = {h1, . . . ,hm} corresponds to the set of source destination
pairs, and so corresponds to the set of paths P = {P1, . . . ,Pm}. Let us define Pu = {Pi : hi /∈ u′,∃v ∈ V (Tu) : hi ∈
v, i = 1, . . . ,m} and let Qu = {Pi : hi ∈ u′,∃v ∈ V (Tu) : hi ∈ v, i = 1, . . . ,m} where u′ is the parent of u in T , for all
u ∈V (T)\{r}. We set Pr = {P1, . . . ,Pm} and Qr = /0. Note that the set Pu∪Qu represents all the paths that correspond

to nodes of subtree Tu. Let u ∈ V (T). Let {q1
u,q

2
u, . . . ,q

|X ||Qu |
u } be the set of all possible vectors of flows for the set

of paths Qu. For all i = 1, . . . , |X ||Qu| and for all P ⊆ Pu ∪Qu, we define fqi
u
(P) as the total amount of flow of an

optimal solution for DFDC reduced to the set of paths P when the vector of flows for paths of Qu is qi
u. Without loss

of generality, we suppose that the vector qi
u is admissible for all u ∈V (T) and for all i = 1, . . . , |X ||Qu|.

We aim at computing fqi
u
(Qu ∪ Pu) for all u ∈ V (T) and for all i = 1, . . . , |X ||Qu|. As |Qu| ≤ t, then there are

O(|X |t) vectors to compute for each u. We proceed by induction. Consider any leaf u ∈V (T). Then |Pu∪Qu| ≤ t by
construction of T . Thus, we compute fqi

u
(Qu∪Pu) for all i = 1, . . . , |X ||Qu| by enumerating all the possible vectors for

paths of Qu. This can be done in O(|X ||Qu∪Pu|) = O(|X |t)-time.
Consider a non-leaf node u ∈ V (T). Let N(u) = {u1, . . . ,udu} be the set of children of u. Suppose we have

computed fqi
u j
(Qu j ∪Pu j) for all j = 1, . . . ,du and for all i = 1, . . . , |X ||Qu j |. We now compute fqi

u
(Qu ∪Pu) for all

i = 1, . . . , |X ||Qu|. To do that, let Ru = Pu \∪du
j=1Pu j . Let {r1

u, . . . ,r
|Qu∪Ru|
u } be the set of all possible vectors of flow for

the set of paths Ru. We define fqi
u,ri′

u
(P) as the total amount of flow of an optimal solution for DFDC reduced to the set

of paths P⊆ Pu∪Qu when the vector of flows for paths of Qu is qi
u and when the vector of flows for paths of Ru is ri′

u .
By definition of fqi

u
(Qu∪Pu), we get that

fqi
u
(Qu∪Pu) = max

i′=1,...,|X ||Ru|
fqi

u,ri′
u
(Qu∪Pu).

By construction of T and by definition of P and Q, if a path P ∈ Pu j′ , for some j′ ∈ {1, . . . ,du}, then P /∈ Pu j for all
j ∈ {1, . . . ,du}\{ j′}. We deduce that

fqi
u,ri′

u
(Qu∪Pu) =

du

∑
j=1

fqi
u,ri′

u
(Pu j)+ fqi

u,ri′
u
(Qu∪Ru) =

du

∑
j=1

fqi
u,ri′

u
(Pu j)+ fqi

u
(Qu)+ fri′

u
(Ru).

Indeed, if two sets P and P′ are disjoint, then fqui (P∪P′) = fqui (P)+ fqui (P
′). Note that some values of vectors qi

u and

ri′
u can be useless for the set of paths Pu j but it is not necessary to introduce other notations. The values of fqi

u
(Qu) and

7

fri
u
(Ru) are directly deduced from qi

u and ri′
u , respectively (sum of the elements of the vector). Finally,

fqi
u,ri′

u
(Pu j) = fqu j

(Qu j ∪Pu j)− fqu j
(Qu j),

where qu j is the union of qi
u and ri′

u from which we remove the elements that do not correspond to paths of Qu j ∪
Pu j . The computation of fqi

u
(Qu ∪Pu) for all i = 1, . . . , |X ||Qu| can be done in O(|X ||Qu||X ||Ru|du)-time because the

computation of fqi
u,ri′

u
(Pu j) can be done independently for each j. Since Qu∪Ru is the set of paths (connections) that

corresponds to the nodes of H in u in the tree decomposition T of H, then |Qu ∪Ru| ≤ t. We deduce that such a
computation can be done in O(du|X |t)-time.

Finally, we have computed fqi
u
(Qu∪Pu) for all i= 1, . . . , |X ||Qu| and for all u∈V (T). As Qr = /0, we have computed

f /0(Qr ∪Pr) for the root r. We deduce that f /0(Qr ∪Pr) is the total amount of flow of an optimal solution for DFDC.
Note that the computation of the vector of flow x of such an optimal solution is similar to the previous equations
(e.g. by replacing max by argmax). The time complexity of the algorithm is O(|X |t ∑u∈V (T) du) = O(|E(T)||X |t) =
O(m|X |tw(H)+1).

Let xmax = maxi=1,...,m 1/∑e∈E(Pi) αe and xmin = mini=1,...,m 1/∑e∈E(Pi) αe. In the rest of the paper, we assume that
log(xmax/xmin) is bounded by a polynomial in the size of the instance (in other words, xmax/xmin can be exponential).
We prove in Theorem 6 a PTAS for FDC when the graph H has bounded treewidth.

Theorem 6. Let t ≥ 1 be any constant integer. For any ε > 0, there is a polynomial (1+ ε)-approximation algorithm
for FDC when tw(H)≤ t.

Proof. For every ε > 0, we prove that there exists an instance of DFDC such that the optimal solution xε satisfies
∑

m
i=1 xε

i ≥ (∑m
i=1 x∗i)/(1+ ε), where x∗ is an optimal solution for FDC.

We first prove that there exists an independent set IS(H) of H such that |IS(H)| ≥ m/(t + 1). Recall that m =
|V (H)|. A graph is t-degenerate if every induced subgraph has a vertex of degree at most t, and the degeneracy of
a graph is the smallest t for which it is t-degenerate. As tw(H) ≤ t and as the degeneracy is upper-bounded by the
treewidth [10], then H has degeneracy at most t. We then construct IS(H) as follows: we add one node of degree
at most t in IS(H), we remove this node and its neighbors, and we repeat this process on the remaining graph (of
degeneracy at most t) until obtaining the empty graph. By construction, IS(H) is an independent set of H. Furthermore,
since the number of steps of this process is at least m/(t +1), we get that |IS(H)| ≥ m/(t +1).

Let ε′ be such that 0 < ε′ < ε. Let X0 = {xmax/(1+ ε′)i : i = 0,1, . . . , p} where p is such that xmax/(1+ ε′)p ≤
(ε−ε′)xmin/(t+1) and X = {0}∪X0∪{xmin}. Thus, (1+ε′)p≥ xmax(t+1)/(xmin(ε−ε′)), and so p≥ log1+ε′(xmax(t+
1)/(xmin(ε− ε′))). One can check that p is bounded by a polynomial in the size of the instance because t is a constant
and ε′ only depends on ε, that is also a constant. Choosing ε′ = ε/2, we get that |X | = 3+ dlog1+ε/2(2xmax(t +
1)/(xminε)e is bounded by a polynomial in the size of the instance (even if xmax/xmin is exponential). By Lemma 5,
we compute in polynomial time an optimal solution xε for DFDC with X as set of possible flow values. Recall that t
and |X | are constant. Let us define f+(x) = ∑

m
i=1 xi1xi≥xmax/(1+ε′)p and f−(x) = ∑

m
i=1 xi1xi<xmax/(1+ε′)p for any vector

x. We set f (x) = f+(x)+ f−(x). Consider an optimal solution x∗ for FDC. We get f (x∗)< f+(x∗)+mxmax/(1+ε′)p.
We construct an auxiliary vector x′ from x∗ as follows. For all i = 1, . . . ,m, if there exists j, 1 ≤ j ≤ p, such that
xmax/(1+ ε′) j ≤ x∗i ≤ xmax/(1+ ε′) j−1, then set x′i = xmax/(1+ ε′) j. For all i = 1, . . . ,m, if x∗i < xmax/(1+ ε′)p, then
set x′i = 0. We get f+(x∗)/ f (x′)≤ 1+ε′ by construction of x′. As x′ takes flow values in X , then f (xε)≥ f (x′) because
xε is an optimal solution for DFDC. Thus, f+(x∗)/ f (xε)≤ 1+ ε′.

We now prove that f (x∗)/ f (xε) ≤ 1 + ε. By previous claims, it is sufficient to prove that f+(x∗)/ f (xε) +
(mxmax)/((1+ ε′)p f (xε)) ≤ 1+ ε. First, recall that f+(x∗)/ f (xε) ≤ 1+ ε′. It remains to prove that (xmaxm)/((1+
ε′)p f (xε)) ≤ ε− ε′. The polynomial time algorithm described in Lemma 5 finds, at least, a set of m/(t + 1) disjoint
paths (connections) with amount of flow (at least) xmin (other connections can be zero). Thus, as t + 1 ≥ m/|IS(H)|
and xmin ∈ X , then f (xε) ≥ mxmin/(t + 1). The corresponding nodes forms an independent set of H. Recall that
p is such that xmax/(1+ ε′)p ≤ (ε− ε′)xmin/(t + 1), and so xmin ≥ (xmax(t + 1))/((1+ ε′)p(ε− ε′)). Thus, f (xε) ≥
(xmaxm)/((1+ ε′)p(ε− ε′)), and so (xmaxm)/((1+ ε′)p f (xε))≤ ε− ε′. We conclude that f (x∗)/ f (xε)≤ 1+ ε, and so
the polynomial time algorithm of Lemma 5 returning xε is a (1+ ε)-approximation algorithm for FDC.

8

We deduce a PTAS for two other classes of instances. Let us first define χe = |{i : E(Pi)∩ e 6= /0, i = 1, . . . ,m}| for
all e ∈ E, as the number of paths that contain edge e. Let χG = maxe∈E χe be the maximum number of paths that share
an edge. Let ∆G be the maximum degree of G.

If G is a tree, then the treewidth tw(H) of the graph H is bounded by ∆G χG. We deduce Corollary 2.

Corollary 2. Let d, t ≥ 1 be any constant values. For any ε> 0, there is a polynomial (1+ε)-approximation algorithm
for FDC when the graph G = (V,E) is a tree, ∆G ≤ d, and χG ≤ t.

If G is a path, then the treewidth tw(H) of the graph H is bounded by χG. We deduce Corollary 3.

Corollary 3. Let t ≥ 1 be any constant integer. For any ε > 0, there is a polynomial (1+ ε)-approximation algorithm
for FDC when the graph G is a path and χG ≤ t.

However, the complexity of FDC remains open when the graph G is a path if χG is not bounded. More precisely, we
do not know if the problem is NP-hard and if there exists a polynomial approximation algorithm with approximation
ratio less than 2.

5. Conclusion and future work

In this paper, we introduced the FDC and we proposed polynomial time approximation scheme and constant factor
approximation algorithms for some classes of instances. However, the complexity of FDC is still unknown while the
problem has been proved to be NP-hard in presence of capacity constraints [2]. The two main open questions are the
following. First, we conjecture that FDC is NP-complete in general. Thus, an important problem is to characterize
the classes of instances for which FDC is NP-complete and to develop polynomial time exact algorithms for the
others. Second, an interesting problem consists in obtaining better approximation ratios for the classes of instances
investigated in this paper and to develop approximation algorithms for other ones (considering here classes for which
we do not know exact polynomial time algorithms). To show the difficulty of such questions, when the graph G
is a path, we do not know if FDC is in P while the best known polynomial time approximation algorithm gives an
approximation ratio equal to two.

References

[1] Ahuja, R. K., Magnanti, T. L., Orlin, J. B., 1993. Network flows: theory, algorithms, and applications. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

[2] Ben-Ameur, W., Ouorou, A., 2006. Mathematical models of the delay constrained routing problem. Algorithmic
Operations Research 1 (2).

[3] Bertsekas, D., Gallager, R., 1992. Data networks (2nd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[4] Cormen, T. H., Stein, C., Rivest, R. L., Leiserson, C. E., 2001. Introduction to Algorithms, 2nd Edition. McGraw-
Hill Higher Education.

[5] Correa, J. R., Schulz, A. S., Moses, N. E. S., 2007. Fast, fair, and efficient flows in networks. Operations Research
55 (2), 215–225.

[6] Even, S., Itai, A., Shamir, A., 1976. On the complexity of timetable and multicommodity flow problems. SIAM
J. Comput. 5 (4), 691–703.

[7] Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A., 2012. Mixed-integer nonlinear programs featuring ”on/off”
constraints. Comp. Opt. and Appl. 52 (2), 537–558.

[8] Minoux, M., 1989. Networks synthesis and optimum network design problems: Models, solution methods and
applications. Networks 19 (3), 313–360.

9

[9] Ouorou, A., Mahey, P., Vial, J.-P., 2000. A survey of algorithms for convex multicommodity flow problems.
Management Science 46 (1), 126–147.

[10] Robertson, N., Seymour, P., 1984. Graph minors. III. planar tree-width. Journal of Combinatorial Theory, Series
B 36 (1), 49 – 64.

[11] Schrijver, A., 2003. Combinatorial optimization. Polyhedra and efficiency. Algorithms and Combinatorics.
Vol. 24. Springer-Verlag, Berlin.

[12] Touati, C., Altman, E., Galtier, J., 2003. Semi-definite programming approach for bandwidth allocation and
routing in networks. Game Theory and Applications 9, 169–179.

10

