Induction of Linear Separability through the Ranked Layers of Binary Classifiers

Abstract : The concept of linear separability is used in the theory of neural networks and pattern recognition methods. This term can be related to examination of learning sets (classes) separation by hyperplanes in a given feature space. The family of K disjoined learning sets can be transformed into K linearly separable sets by the ranked layer of binary classifiers. Problems of the ranked layers deigning are analyzed in the paper.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.69-77, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_8〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571330
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 11:41:21
Dernière modification le : vendredi 1 décembre 2017 - 01:16:22

Fichier

978-3-642-23957-1_8_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Leon Bobrowski. Induction of Linear Separability through the Ranked Layers of Binary Classifiers. Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.69-77, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_8〉. 〈hal-01571330〉

Partager

Métriques

Consultations de la notice

27

Téléchargements de fichiers

11