Anomaly Detection from Network Logs Using Diffusion Maps - Archive ouverte HAL Access content directly
Conference Papers Year : 2011

Anomaly Detection from Network Logs Using Diffusion Maps

(1) , (1) , (1)
1
Tuomo Sipola
  • Function : Author
  • PersonId : 1014062
Antti Juvonen
  • Function : Author
  • PersonId : 1014063
Joel Lehtonen
  • Function : Author
  • PersonId : 1014064

Abstract

The goal of this study is to detect anomalous queries from network logs using a dimensionality reduction framework. The fequencies of 2-grams in queries are extracted to a feature matrix. Dimensionality reduction is done by applying diffusion maps. The method is adaptive and thus does not need training before analysis. We tested the method with data that includes normal and intrusive traffic to a web server. This approach finds all intrusions in the dataset.
Fichier principal
Vignette du fichier
978-3-642-23957-1_20_Chapter.pdf (238.32 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01571332 , version 1 (02-08-2017)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Tuomo Sipola, Antti Juvonen, Joel Lehtonen. Anomaly Detection from Network Logs Using Diffusion Maps. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. pp.172-181, ⟨10.1007/978-3-642-23957-1_20⟩. ⟨hal-01571332⟩
54 View
115 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More