Improving the Classification Performance of Liquid State Machines Based on the Separation Property

Abstract : Liquid State Machines constitute a powerful computational tool for carrying out complex real time computations on continuous input streams. Their performance is based on two properties, approximation and separation. While the former depends on the selection of class functions for the readout maps, the latter needs to be evaluated for a particular liquid architecture. In the current paper we show how the Fisher’s Discriminant Ratio can be used to effectively measure the separation of a Liquid State Machine. This measure is then used as a fitness function in an evolutionary framework that searches for suitable liquid properties and architectures in order to optimize the performance of the trained readouts. Evaluation results demonstrate the effectiveness of the proposed approach.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.52-62, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_6〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571341
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 11:41:33
Dernière modification le : vendredi 1 décembre 2017 - 01:16:22

Fichier

978-3-642-23957-1_6_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Emmanouil Hourdakis, Panos Trahanias. Improving the Classification Performance of Liquid State Machines Based on the Separation Property. Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.52-62, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_6〉. 〈hal-01571341〉

Partager

Métriques

Consultations de la notice

27

Téléchargements de fichiers

14