Support Vector Machines versus Artificial Neural Networks for Wood Dielectric Loss Factor Estimation

Abstract : This research effort aims in the estimation of Wood Loss Factor by employing Support Vector Machines. For this purpose experimental data for two different wood species were used. The estimation of the dielectric properties of wood was done by using various Kernel algorithms as a function of both ambient electro-thermal conditions applied during drying of wood and basic wood chemistry. Actually the best fit neural models that were developed in a previous effort of our research team were compared to the Kernels’ approaches in order to determine the optimal ones.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.140-149, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_16〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571343
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 11:41:35
Dernière modification le : mercredi 27 décembre 2017 - 14:04:02

Fichier

978-3-642-23957-1_16_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Lazaros Iliadis, Stavros Tachos, Stavros Avramidis, Shawn Mansfield. Support Vector Machines versus Artificial Neural Networks for Wood Dielectric Loss Factor Estimation. Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.140-149, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_16〉. 〈hal-01571343〉

Partager

Métriques

Consultations de la notice

32

Téléchargements de fichiers

16