Y. W. Hu, An a l y s i s o f c o n s u me r ' s b e h a v i o r f o r c o w mi l k a n d g o a t mi l k i n T a i wa n . Grains and Livestock, pp.24118-24145, 1993.

H. C. Ding and T. C. Chang, Detection of reconstituted milk in fresh milk, Journal of the Chinese Agricultural Chemical Society, vol.23, issue.4, pp.406-411, 1986.

F. Harding, Chapter 5 Adulteration of milk In : Milk Quality, pp.60-74, 1995.

A. Borin, M. Ferrao, C. Mello, D. Maretto, and R. Poppi, Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk, Analytica Chimica Acta, vol.579, issue.1, pp.579-604, 2006.
DOI : 10.1016/j.aca.2006.07.008

C. W. Lin, S. H. Chen, H. P. Su, and C. C. Ju, Detection of reconstituted milk in raw milk through determination of milk Dnase activity, Journal of the Chinese Agricultural Chemical Society, vol.25, issue.3, pp.332-340, 1987.

J. Berg, Diary Technology in the Tropics and Subtropics. Pudoc Wageningen. the Netherlands, pp.223-242, 1988.

F. Harding, Chapter 6 Composition quality In : Milk Quality, pp.75-96, 1995.

K. H. Norris, Advances in Near Infrared Spectroscopy In: Making Light Work 596- 602. Murray, I. and I. A. Cowe eds, 1991.

Z. Schmilovitch, E. Maltz, and M. Austerweill, Fresh raw milk composition analysis by NIR spectroscopy, Proceedings of the International Symposium on Prospects for Automatic Milking, 1992.

J. Y. Chen, C. Iyo, F. Terada, and S. Kawano, Effect of multiplicative scatter correction on wavelength selection for near infrared calibration to determine fat content in raw milk, Journal of Near Infrared Spectroscopy, vol.10, issue.1, pp.301-307, 2002.
DOI : 10.1255/jnirs.346

M. Kawasaki, S. Kawamura, M. Tsukahara, S. Morita, M. Komiya et al., Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot, Computers and Electronics in Agriculture, vol.63, issue.1, pp.22-27, 2008.
DOI : 10.1016/j.compag.2008.01.006

J. A. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural Processing Letters, vol.9, issue.3, pp.293-300, 1999.
DOI : 10.1023/A:1018628609742

H. Y. Yu, X. Y. Niu, H. J. Lin, Y. B. Ying, B. B. Li et al., A feasibility study on on-line determination of rice wine composition by Vis???NIR spectroscopy and least-squares support vector machines, Food Chemistry, vol.113, issue.1, pp.291-296, 2009.
DOI : 10.1016/j.foodchem.2008.06.083

Y. Siuly and P. Wen, Clustering technique-based least square support vector machine for EEG signal classification, Computer Methods and Programs in Biomedicine, vol.104, issue.3, 2010.
DOI : 10.1016/j.cmpb.2010.11.014

URL : http://www.sciencedirect.com/science/article/pii/S0169260711002756/pdfft?md5=bf14261f956d9d952495d6d413e44483&pid=1-s2.0-S0169260711002756-main.pdf

X. Zuao, G. Wang, K. Zhao, and D. Tan, On-line least squares support vector machine algorithm in gas prediction, Mining Science and Technology, vol.19, pp.194-0198, 2009.

D. Wu, Y. He, S. Feng, and D. W. Sun, Study on infrared spectroscopy technique for fast measurement of protein content in milk powder based on LS-SVM, Journal of Food Engineering, vol.84, issue.1, pp.124-131, 2008.
DOI : 10.1016/j.jfoodeng.2007.04.031