Transferring Models in Hybrid Reinforcement Learning Agents

Abstract : The main objective of transfer learning is to reuse knowledge acquired in a previous learned task, in order to enhance the learning procedure in a new and more complex task. Transfer learning comprises a suitable solution for speeding up the learning procedure in Reinforcement Learning tasks. In this work, we propose a novel method for transferring models to a hybrid reinforcement learning agent. The models of the transition and reward functions of a source task, will be transferred to a relevant but different target task. The learning algorithm of the target task’s agent takes a hybrid approach, implementing both model-free and model-based learning, in order to fully exploit the presence of a model. The empirical evaluation, of the proposed approach, demonstrated significant results and performance improvements in the 3D Mountain Car task, by successfully using the models generated from the standard 2D Mountain Car.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.162-171, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_19〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571355
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 11:41:45
Dernière modification le : vendredi 1 décembre 2017 - 01:16:23

Fichier

978-3-642-23957-1_19_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Anestis Fachantidis, Ioannis Partalas, Grigorios Tsoumakas, Ioannis Vlahavas. Transferring Models in Hybrid Reinforcement Learning Agents. Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.162-171, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_19〉. 〈hal-01571355〉

Partager

Métriques

Consultations de la notice

30

Téléchargements de fichiers

9