Vision-Based Autonomous Navigation Using Supervised Learning Techniques

Abstract : This paper presents a mobile control system capable of learn behaviors based on human examples. Our approach is based on image processing, template matching, finite state machine, and template memory. The system proposed allows image segmentation using neural networks in order to identify navigable and non-navigable regions. It also uses supervised learning techniques which work with different levels of memory of the templates. As output our system is capable controlling speed and steering for autonomous mobile robot navigation. Experimental tests have been carried out to evaluate the learning techniques.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.11-20, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_2〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571363
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 11:41:52
Dernière modification le : vendredi 1 décembre 2017 - 01:16:23

Fichier

978-3-642-23957-1_2_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jefferson Souza, Gustavo Pessin, Fernando Osório, Denis Wolf. Vision-Based Autonomous Navigation Using Supervised Learning Techniques. Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.11-20, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_2〉. 〈hal-01571363〉

Partager

Métriques

Consultations de la notice

20

Téléchargements de fichiers

9