Neural Network Rule Extraction to Detect Credit Card Fraud

Abstract : Neural networks have represented a serious barrier-to-entry in their application in automated fraud detection due to their black box and often proprietary nature which is overcome here by combining them with symbolic rule extraction. A Sparse Oracle-based Adaptive Rule extraction algorithm is used to produce comprehensible rules from a neural network to aid the detection of credit card fraud. In this paper, a method to improve this extraction algorithm is presented along with results from a large real-world European credit card data set. Through this application it is shown that neural networks can assist in mission-critical areas of business and are an important tool in the transparent detection of fraud.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.101-110, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_12〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571371
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 11:41:58
Dernière modification le : vendredi 1 décembre 2017 - 01:16:23

Fichier

978-3-642-23957-1_12_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Nick Ryman-Tubb, Paul Krause. Neural Network Rule Extraction to Detect Credit Card Fraud. Lazaros Iliadis; Chrisina Jayne. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-363 (Part I), pp.101-110, 2011, Engineering Applications of Neural Networks. 〈10.1007/978-3-642-23957-1_12〉. 〈hal-01571371〉

Partager

Métriques

Consultations de la notice

35

Téléchargements de fichiers

37