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Abstract. Weather operations play an important and integral part of planning, 
execution and sustainment of mission operations. In this paper, a neuro-fuzzy 
hybridization technique is applied to model the weather operations and predict 
its impact on the effectiveness of air tasking operations and missions. Spatio-
temporal weather data from various meteorological sources are collected and 
used as the input to a neural network and the predicted weather conditions at a 
given place is classified based on fuzzy logic. The corresponding fuzzy rules are 
generated forming the basis for introducing the weather conditions in the 
evaluation of the effectiveness of the military mission plans. An agent-based 
architecture is proposed where agents representing the various weather sensors 
feed the weather data to the simulator, and a weather agent developed using 
neuro-fuzzy hybridization computes the weather conditions over the flight plan 
of the mission.  These rules are then used by the Mission Planning and 
Execution system that evaluates the effectiveness of military missions in 
various weather conditions.  

Keywords: Military simulation, Weather Modeling, Neuro-Fuzzy 
hybridization, Mission effectiveness, agent-based architecture. 

1   Introduction 

Virtual Warfare Analysis systems constitute an important class of applications 
that have proved to be an important tool for military system analyses and an 
inexpensive alternate to live training exercises. Air Wargame Simulation System 
(AWGSS) is a virtual warfare analysis software that has been developed for 
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planning, analysis and evaluating air tasking operations [1],[2]. In the design and 
development of such applications, modeling the complexity and battle dynamics, 
assessing, and predicting the outcomes of mission plans quantitatively under 
various real-world conditions is a very difficult endeavor [3],[4]. One such 
phenomenon that bears an important and critical success factor in achieving the 
military objectives is weather operations [1]. Weather operations [5] are an 
integral part of planning, execution, and sustainment of military operations and 
critical to commanders’ battle space awareness and decision making across the 
range of military operations. Operational environment and weather conditions play 
an important role in deciding the suitability of the weapon for a target. For 
instance, poor weather and conflict induced environmental conditions such as 
smoke from bombing may degrade or block the infrared, electro-optical or laser 
targeting sensors required for delivery of guidance ordnance. Laser Guided Bombs 
cannot be used in poor weather where target illumination cannot be seen, or where 
it is not possible to get target designator in close distance. However, poor visibility 
does not affect satellite guided bombs. Only comparatively inaccurately unguided 
bombs could be delivered in poor weather. These factors change the decisions 
taken by the pilots on Execute/Call-off mission, Change mission route and/or 
profile of weapon delivery, change in the class of weapons to deliver in the light of 
sensors performance, re-prioritize the target, and/or change the Time-on-target of 
the mission or even abort the mission [1],[2]. In this paper, ANFIS a neuro-fuzzy 
hybridization technique is used to model the weather conditions and predict the 
Mission_Effectiveness_Factor. 

2    An Agent-based architecture to model military operations 

Agent-oriented system development aims to simplify the construction of complex 
systems by introducing a natural abstraction layer on top of the object-oriented 
paradigm composed of autonomous interacting actors. It has emerged as a powerful 
modeling technique that is more realistic for today’s dynamic warfare scenarios than 
the traditional models which were deterministic, stochastic or based on differential 
equations. These approaches provide a very simple and intuitive framework for 
modeling warfare and are very limited when it comes to representing the complex 
interactions of real-world combat because of their high degree of aggregation, multi-
resolution modeling and varying attrition rate factors. The effects of random 
individual agent behavior and of the resulting interactions of agents are phenomenon 
that traditional equation-based models simply cannot capture. The traditional 
approaches of computers to warfare simulation used algorithms that aggregated the 
forces on each side, such as differential equations or game theory, effectively 
modeling the entire battle space with a single process. These mathematical theories 
treat the opposing sides as aggregates, and do not consider the detailed interactions of 
individual entities. 
          Agent-based models give each entity its own thread of execution, mimicking the 
real-world entities that affect military operations [3]. The Environment Agent is a 



lightweight agent that determines the current environmental conditions over the area 
of operation selected for the mission.  
   
 

 
Fig. 1: Agent architecture for AWGSS 

 
Fig. 2: Mission Planning with weather 

constraints 
 
It receives information from weather, terrain and deployment agent and provides 

an information service to the world agent after its own process of reasoning. This 
information is then used by other agents such as Manual Observation Post (MOP), 
Pilot, Unmanned Air Vehicle (UAV), Identification Friend/Foe (IFF), Radar Warning 
Receiver (RWR), Missile Warning Receiver (MWR), Laser Warning Receiver 
(LWR), Mission Planning, Sensor Performance, Target Acquisition and Damage 
Assessment and Computation. The weather agent is an important agent that that has 
functions such as Get_Visibility(), Get_Temperature() and Get CloudCover(). The 
weather agents’s reasoning has been designed using ANFIS, a neuro-fuzzy 
hybridization technique that is used to predict the Mission_Success_Factor(), 
considering the weather conditions along the mission route. 

Surface aviation weather observations include weather elements and forecasts 
pertaining to flying. A network of airport stations provides routine up-to-date surface 
weather information. Upper-air weather data is received from sounding balloons 
(radiosonde observations) and pilot weather reports that furnish temperature, 
humidity, pressure, and wind data. Aircraft in flight also report turbulence, icing and 
height of cloud tops. The weather radar provides detailed information about 
precipitation, winds, and weather systems. Doppler technology allows the radar to 
provide measurements of winds through a large vertical depth of the atmosphere. 
Terminal Doppler weather radars are used to alert and warn airport controllers of 
approaching wind shear, gust fronts, and heavy precipitation which could cause 
hazardous conditions for take-off, landing and diversion. Low-level wind shear alert 
systems provide pilots and controllers with information on hazardous surface wind 
conditions (on and near airbases) that create unsafe operational conditions. Visible, 
infrared and other types of images of clouds are taken from weather satellites in orbit. 
Weather is a continuous, multi-dimensional, spatio-temporally data intensive, 
dynamic and partly chaotic process. Traditionally, two main approaches for weather 
forecasting are followed: Numerical Weather Prediction and Analogue forecasting. 
For the AWGSS application, it is needed to consider the past weather conditions at 
given places of operation and predict the weather for simulation of mission tasks in 
real-time. In this paper, the ANFIS neuro-fuzzy hybridization technique is used to 



predict the weather conditions along the mission route and study the effects of 
weather in the virtual warfare scenario analysis in terms of pilot decisions in mission 
planning, performance of sensors, and target identification and damage assessment. 

3 A Neuro-Fuzzy hybridization approach to weather prediction 

The weather agent has been designed using ANFIS to give the predicted 
Mission_Success_factor in weather constraints. In the following section, the neuro-
fuzzy hybridization approach will be discussed. Both neural networks and fuzzy 
systems are dynamic, parallel processing systems that estimate input–output functions 
[6],[7],[8]. They estimate a function without any mathematical model and learn from 
experience with sample data. It has also been proven that 1) any rule-based fuzzy 
system may be approximated by a neural net and 2) any neural net (feed-forward, 
multilayered) may be approximated by a rule-based fuzzy system. Fuzzy systems can 
be broadly categorized into two families. The first includes linguistic models based on 
collections of IF–THEN rules, whose antecedents and consequents utilize fuzzy 
values. The Mamdani model falls in this group where the knowledge is represented as 
it is shown in the following expression. 
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The second category, which is used to model the Weather prediction problem is the 
Sugeno-type and it uses a rule structure that has fuzzy antecedent and functional 
consequent parts. This can be viewed as the expansion of piece-wise linear partition 
represented as shown in the rule below.  
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The conjunction “and” Operation between fuzzy sets known as Linguistics, for the 
implementation of the Mamdani rules is done by employing special Fuzzy Operators 
called T-Norms [6]. The ANFIS uses by default the Minimum T-Norm which is the 
case here and it can be seen in the above equation 1. The approach approximates a 
nonlinear system with a combination of several linear systems, by decomposing the 
whole input space into several partial fuzzy spaces and representing each output space 
with a linear equation. Such models are capable of representing both qualitative and 
quantitative information and allow relatively easier application of powerful learning 
techniques for their identification from data. They are capable of approximating any 
continuous real-valued function on a compact set to any degree of accuracy [9],[10]. 
This type of knowledge representation does not allow the output variables to be 
described in linguistic terms and the parameter optimization is carried out iteratively 
using a nonlinear optimization method.  

Fuzzy systems exhibit both symbolic and numeric features. Neuro-fuzzy 
computing [8],[11] is a judicious integration of the merits of neural and fuzzy 
approaches, enables one to build more intelligent decision-making systems. Neuro-
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fuzzy hybridization is done broadly in two ways: a neural network equipped with the 
capability of handling fuzzy information [termed fuzzy-neural network] and a fuzzy 
system augmented by neural networks to enhance some of its characteristics like 
flexibility, speed, and adaptability [termed neural-fuzzy system]. ANFIS is an 
adaptive network that is functionally equivalent to a fuzzy inference system and 
referred to in literature as “adaptive network based fuzzy inference system” or 
“adaptive neuro-fuzzy inference system” (Fig.3) [9],[10],[13],[14]. In the ANFIS 
model, crisp input series are converted to fuzzy inputs by developing triangular, 
trapezoidal and sigmoid membership functions for each input series. These fuzzy 
inputs are processed through a network of transfer functions at the nodes of different 
layers of the network to obtain fuzzy outputs with linear membership functions that 
are combined to obtain a single crisp output the predicted Mission_Success_Factor, as 
the ANFIS method permits only one output in the model. The following equations 
2,3,4 correspond to triangular, trapezoidal and sigmoid membership functions. 
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Weather conditions of interest to AWGSS [15],[16],[17],[18] are classified as 
Precipitation (Drizzle, Rain, Snow, Snow-grains, Ice crystals, Ice pellets and Hail), 
Obscuration (Mist, Fog, Dust, Sand, Haze, Spray, Volcanic ash, Smoke) and Others 
(Dust/Sand whirls, Squalls, Funnel cloud, Tornado or Water spout, Sandstorm, Dust-
storm). Temperature, Clouds, Height of cloud base, Wind speed and direction, Icing, 
Precipitation, Visibility, Fog, Mist, Rain, Thunderstorm, Haze, dust/sand whirls and 
squall speeds are quantified using linguistic fuzzy variables. Target Identification 
factor: Rapid and certain target detection and identification are the dominant factors 
in the success of all air-to-ground attacks. The ability of tactical fighters to penetrate 
enemy defenses and to acquire and identify ground targets successfully within 
weather constraints is a keystone of success in a mission. It has been observed that 
aerial observers respond to targets in a manner indicating that detection / 
identification represents a continuum rather than discrete phenomena. At one extreme 

 
Fig.3 Weather agent’s architecture and behaviors 

Fig.4:  ANFIS architecture to design the 
Weather agent 



the response is based on the ability to merely discriminate the existence of a military 
object among non-military objects (detection) [19],[20],[21]. At the other extreme the 
observer can describe the object in precise detail (identification). Factors considered 
for computing the Target Identification factor are target size, percent contrast, 
illumination, terrain, weather conditions, altitude and speed of the aircraft at time of 
target acquisition. Target Size: As target size increases, probability of correct target 
identification increases. It may vary from small to large tactical targets, including 
personnel, trucks, and tanks to big targets as bridges, runways and taxi-tracks. 
Contrast: Target/Ground Brightness Contrast is expressed as a percentage. 
Illumination: Detection performance increases as illumination increases. Effects of 
decreases in illumination occurring after sunset and before sunrise are very important 
and need to be considered. Terrain: Types of terrain have been defined in terms such 
as number of slope changes per unit area and average slope change. Four different 
terrain types have been defined-fairly smooth, moderately rough, rough, and very 
rough. As the roughness of terrain increases, percent terrain view decreases, and 
decrease in detection performance is observed. Weather: Temperature, humidity, and 
wind effects the performance of sensors (such as Radars) deployed, where as 
conditions such as Precipitation, icing, wind, visibility, fog, rain, date and time of 
operation, clouds, and storm effect the pilots’ decisions in planning and executing the 
missions. Altitude: The relationship between altitude and target 
detection/identification is normally one in which there is assumed to be an optimal 
altitude; above and below this optimum altitude, detection is reduced. As altitude 
increases, detection performance decreases. As altitude is increased beyond an 
optimal point, detection probability falls off rapidly.  

Data on all these factors are collected from meteorological department databases, 
handbooks and experimental field trials and heuristic knowledge from experts and 
defense analysts (in questionnaire form) are collected and recorded. They are then 
represented as decision matrices and decision trees which form the basis to design the 
membership functions and rules. The rules are then executed in the mission 
processing module and defuzzified to obtain the damage to target [22]. These results 
are then compared to the expected output and fine-tuned before storing in the rule 
base. A decision to include the new rule or not is provided to the commander. 
Missions and results of the missions are stored as a case-base for retrieval and reuse 
of missions plans in new situations. The following fuzzy linguistic variables used in 
the design of the game rules are as follows:   

Mission_Success_Factor (with weather constraints):  [1-10] {Very Low: [0.0 - 
3.5]; Low with Moderate Risk [2.5 - 5.5]; Medium with Controllable Risk [4.5 - 7.5]; 
High with Moderate Risk [6.5 - 8.0]; Very High with Low Risk [7.5-10.0]} 
Temperature: [Very Low, Low, Moderate, High, Very High] Fog-Haze: [Shallow, 
Patches, Low Drifting, Blowing, Showers, Thunderstorm,  Freezing, Partial] Wind-
Speed: [Light, Moderate, Heavy] Clouds/Cloud Base: [Shallow, Patches, Low 
Drifting, Blowing, Showers, Thunderstorm, Partial]; [Height (ft)] Visibility: [Low, 
Medium, Clear] 
Turbulence: [Clear, Low, Medium, Heavy] Storm/Squalls: [Clear, Low, Medium, 
Heavy] Sky Cover: [Clear, Few, Scattered, Broken, Overcast, Vertical Visibility] 
Terrain:  [1-100] {Fairly Smooth [0 -22]; Moderately Rough [14 - 49]; Rough [45-
81]; Very Rough [75 - 100]}. Target Size (in feet): {Very small: [0 -100]; Small: [70 



– 190]; Medium sized: [160 – 300]; Large: [270 – 400]; Fairly Large: [360 – 500]; 
Extremely Large: [450 – 900]} Damage: Offset (in meters): {Very Less:[0-23]; 
Less:[16-36]; Medium: [34-57]; Large: [56-80]; Very Large [78-100]} Weapon 
Target Match: [0 -10] {Poor: [0-3.6]; Average: [3.36 – 6.669]; Good: [6.73 – 14.2]} 
Target Identification Factor: [0 -10] {Very poorly identified: [0-1.19]; Poorly 
identified [0.96 – 2.43]; Average identification [2.34 – 5.61]; Good identification 
[5.43 – 7.55]; Excellent identification [7.35 – 10]} Relative Damage (Damage 
relative to intended damage): [0 - 100] {Mild: [0-18]; Moderate: [16-36]; Average: 
[34-57]; Severe: [56-80];  Fully Damaged: [78-96]}. 
Data from meteorological database is used to train the network to apply a hybrid 
method whose membership functions and parameters keep changing until the weather 
forecast error is minimized (Fig.5(a),(b)). Then the resulting model is applied to the 
test data of the mission time and places en-route from take-off base, target and 
landing base. 

4 Results discussion 

 
The fuzzy variables are used to calculate the Mission success factor based on the 

prevailing weather conditions generated by the ANFIS model, target identification 
factor and firing of the rules to compute the relative damage to the target (Fig. 2). 
Offset is calculated using actual altitude, actual vertical flight path angle, actual wind 
speed and observed altitude, observed altitude, observed vertical flight path angle, 
observed wind speed by the weapon system trajectory calculation module and the 
aircraft speed as the input variables (Table 3). Offset is a measure of induced error, 
wind induced error, and vertical flight path angle induced error.  

 

               
          Fig 4(a),(b):ANFIS and Rules for computing Mission Success Factor 

Case Mission ID # 001: Consider a large area-target of size of 550 ft to be attacked, 
where the fuzzy variables target-ground contrast 80%, the terrain, rated 8, is fairly 
smooth, aircraft altitude is 900 ft, aircraft range is 5000 ft is flying at 100 knots speed. 
The target identification factor for this target is computed as “good” with value 7.32.  
(In the tables below * denotes the Missions planned and executed when considering 
the Weather conditions.)               

 



                 
Fig. 5(a),(b)  ANFIS Rules and Surface Plot for the different Weather conditions in AWGSS 
  

Table 1: Fuzzy Rules to determine the Mission Success factor in Weather conditions 
MissionID Temperature Fog-Haze 

 
Wind Speed 
(m/s) 

Clouds/ 
Base 

Visibility Turbulence Storm/ 
Squalls 

Mission 
Success 
Factor 

#001 Moderate Clear Low-Drifting Clear Clear Low Clear 8.4 
#001* Very Low Moderate High Low Poor High Clear 3.7 
#002 Moderate Clear Moderate Scattered Clear Low Clear 9.8 
#002* Very High Haze High Low Poor Low Squall 7.1 
 

Table 2: Fuzzy Rules to determine the Target Identification factor 
MissionID Target 

Size(ft) 
Target-
Ground 
Contrast% 

 

Illumination 
(foot 
candles) 

Terrain Weather_ 
Mission 
Success 
Factor 

Aircraft 
Altitude 
(feet) 

Aircraft 
Range 
(feet) 

Aircraft 
Speed 
(knots) 

Target  
Identification 
Factor 

#001 550 80 40 8 8.4 900 5000 100 7.32 
#001* 550 45 20 8 3.7 900 5000 80 5.67 
#002 550 80 60 7 9.8 750 4000 80 8.03 
#002* 550 45 30 7 7.1 750 4000 60 6.43 

 
Table 3: Fuzzy Rules to compute the Relative damage to target 

MissionID Offset 
(meters) 

Target Radius 
(km) 

Weapon-Target 
Match 

Weapon 
Delivery Mode 

Target 
Identification 

Factor 

Relative damage 

# 001 29.03 0.09 6 6 7.32 28.91 
#001* 37.54 0.09 6 6 5.67 13.55 
# 002 6.07 90.0 9 9 8.03 88.74 
#002* 12.65 90.0 9 9 6.43 65.92 
 
Table 4: Fuzzy attributes to determine the offset of the weapon from the intended target 

In this mission, on firing the rules for inference, the offset from the desired point of 
impact is 29m, considered “less”(i.e. fairly accurate targeting); weapon-target match 
is 6 (average),  “good” target identification factor 7.32, the relative damage caused is 
28.92 which is a “moderate” damage to the target. We consider two scenarios of 
weather conditions at the given place and time or the mission plan (Fig.2). Weather 
conditions are identified based on the place and time of missions. The ANFIS model 
computes the Mission_Success_Factor as 8.4 when no weather conditions are 

Mission 
ID # 

Apparent 
Altitude(km) 

Apparent 
Angle 
(degrees) 

Apparent 
Wind 
velocity 
(km/hr) 

Actual 
Altitude(km) 

Actual 
Angle(degrees) 

Actual 
Wind 
velocity 
(km/hr) 

Aircraft 
speed(km/hr) 

Offset 
(meters) 

001 1.65 -26.9 -25.24 1.67 -26.9 -25.24 829.8 29.03 
002* 1.65 -26.9 -23.9 1.67 -26.9 -25.24 820.1 37.54 
002 1.65 -25.2 -28 1.65 -25.2 -30.4 830.2 6.07 
002* 1.65 -25.2 -22 1.65 -25.2 -30.4 824.7 12.65 



considered, and reduces to 3.7 when weather conditions are considered in the 
AWGSS (Table1, 2). These conditions also reduce the Relative Damage from 28.91 
to 13.55 (Table 3) and offset of the weapon hitting away from the intended target 
increased from 29.03 to 37.54 (Table 4). 
Case Mission ID # 002: Another mission planned by the commander where a similar 
target is chosen with the fuzzy variables as shown in Tables 1 and 2.  While the offset 
has reduced to 6m, considered “very less” (i.e. very accurate targeting), choosing a 
different weapon system and delivery improved the weapon-target match to 9 
(“good”), and mode of weapon delivery 9, the target identification factor also 
improved to 8.033 (considered “excellent”), and the relative damage caused is 88.74, 
which is a “substantial” damage to the target (Tables 2, 3). Weather conditions are 
again identified based on the place and time of missions. The ANFIS gives the 
Mission_Success_factor as 9.8 when no weather conditions are considered, and 
reduces to 7.1 when weather conditions are considered in the AWGSS (Table1, 2). 
These conditions also reduce the Relative Damage from 28.91 to 13.55 (Table 3) and 
offset of the weapon hitting away from the intended target increased from 6.07 to 
12.05 (Table 4). These attributes form the antecedents of the fuzzy rule and the 
consequent is shown in the last column of the tables. For all the missions that the 
pilots plan in the wargame exercises, these fuzzy game rules are used to infer the 
expected damage caused to the target. These missions form a part of a case-base 
which is used as part of the ‘learning’ by the system for future instructional use. 

5  Conclusions 

A novel approach using ANFIS is presented in this research paper. More 
specifically, a neuro-fuzzy hybridization technique is employed to model the 
operations of the weather agent in a virtual warfare analysis system called AWGSS 
that is designed using an agent-based architecture. The system is applied to compare 
the results obtained in the presence of weather in combat simulation exercises. The 
results that are predicted by the weather agents after a pilot application and the rules 
that are generated to predict the Mission_Success_Factor are found to be very 
satisfactory in predicting the mission’s performance in the presence of different 
weather conditions over different regions of the mission route. This concept induces a 
realistic methodology to introduce weather conditions in the AWGSS by using 
ANFIS as the reasoning and inference system in the weather agent. A future research 
effort will include working on ways for optimizing the rules for specific weather 
conditions like extreme weather phenomena and also on the improvement of the 
overall system’s performance. Of course the whole idea and the framework of the 
developed system can be applied also in other wider problems like watching and 
taking real time measures for the cases of natural disasters. 
Acknowledgments. We thank Air Marshal “Doc” Vaidya and Air Cmde S P Ojha, 
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