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Abstract. The Hypercube Neural Network Algorithm is a novel su-
pervised method for classification. One hypercube is defined per class
in the attribute space based on the training data. Each dimension of a
hypercube is set to cover the full range of values in the class. The hy-
percube learning is therefore a rapid, one-shot form of learning. This pa-
per presents three versions of the algorithm: hypercube without neurons;
with simple neurons; and with adaptive activation function neurons. The
methods are tested and evaluated on several diverse publically available
data sets and compared with published results obtained on these data
when using alternative methods.

Keywords: Hypercube Neural Network, Modal Learning, Adaptive Func-
tions Neural Network, Classifictaion

1 Introduction

This paper introduces a novel supervised learning method for classification based
on the idea of a hypercube and the combination of hypercubes with neural modes
of supervised learning. The attraction of the hypercube is that it directly en-
codes and represents the range of values of across patterns in each class and on
each dimension, and thereby provides immediate separation of classes wherever
there is at least one non-overlapping dimensional range between the two classes.
The process is extremely efficient, requiring only a single pass through the train-
ing data, very few computational steps, and only one hypercube per class. The
hypercube is a radical simplification of Nested Generalised Exemplar theory [1].

The modal learning approach to neural computing [2] is combined with the
hypercube mode of learning. A principle of modal learning is that each mode
tackles a different aspect of the learning task, and thus the learning problem
is decomposed. Rather than attempting to enhance a mode so that it becomes
more complex and computationally demanding without necessarily achieving
a gain in classification/learning performance sufficient to justify the increase
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in complexity, the approach is to combine a selection of relatively simple and
efficient modes in order to jointly solve the learning problem. The modes are
combined within a single neural architecture. In this case we initially explore the
hypercube mode and then its combination with the standard delta weight update
learning rule for gradient descent in a single layer neural network, and then with
the adaptive function neural network [3], which itself performs a modified delta
rule in parallel with function adaptation.

The simplification of Nested Generalised Exemplar theory (NGE) [1] and as-
sociated hyperrectangle approaches [4] in hypercube learning avoids the NP-hard
problem of determining an optimal number, location and size of the hypercubes.
This simplification is achieved by stipulating one hypercube per class and allow-
ing hypercubes to overlap. The patterns in overlapping regions are passed to the
hypercube neuron to classify. The neuron is exclusively trained on patterns in
the overlapping regions of the hypercube.

The nested generalised exemplar (NGE) theory is based on storing gener-
alised examples in the form of hyperrectangles in a Euclidean n-space [1]. These
hyperrectangles may overlap or nest. Each hyperrectangle has weights attached
to it, which are modified during training. Once the training finishes, a test exam-
ple is classified by computing the Euclidean distance between the example and
each of the hyperrectangles representing the generalised exemplars. During the
NGE training the number of hyperrectangles increases as training samples are
presented. The existing hyperrectangle nearest to a training example expands.
The performance of the NGE is compared with the k-nearest neighbour (kNN)
algorithm in [4] in 11 domains and found to be significantly inferior to kNN in
9 of them. Several modifications of the NGE are suggested in [4] to improve
the performance of the NGE such as avoiding overlapping hyperrectangles and
batch training. Carpenter [5] et al. introduced the fuzzy ARTMAP based on
fuzzy logic and adaptive resonance theory (ART). The category boxes used by
the fuzzy ARTMAP with complement coding are similar to the hyperrectangles.

In this work we only require a fixed number of hypercubes which corresponds
to the number of classes and a single pass through the data i.e. one shot learn-
ing; and there is no need to measure the distance from hypercube surface or
hypercube volume. The problem of creating an optimal number of hyperrectan-
gles for classification is NP-hard and several techniques have been suggested in
the literature [6, 7] to reduce the number of irrelevant hyperrectangles. For ex-
ample, Garcia [8] suggests the use of evolutionary algorithms to select the most
influential hyperrectangles in the NGE for classification tasks. In the hypercube
algorithms presented here the problem is avoided by allowing hypercubes to over-
lap. A neural mode of learning is used to classify the patterns in the overlapping
regions of the hypercube.

Other related work includes the Fuzzy Min-Max Neural Network [9] based on
a fuzzy set of hyperboxes. A fuzzy set hyperbox is an n-dimensional box defined
by a min point and a max point with a corresponding membership function. The
min-max points are determined using an expansion-contraction process that can
learn nonlinear class boundaries in a single pass through the data and provides
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the ability to incorporate new and refine existing classes without retraining. In
the present work the hypercubes, like the hyperboxes, are allowed to expand and
are bounded. However there is no contraction process necessary and overlapping
between the hypercubes is permitted. The hypercube topology has been applied
to modeling on distributed memory concurrent computers [10]. The idea of the
hypercube in [10] is used to find efficient implementations of network algorithms
with different connectivity patterns. It is not used for classification.

The rest of this paper is organized as follows: Section II introduces the Hyper-
cube Neural Network (HNN) Algorithm. Section IIT presents the experiments,
results and evaluation of the performance of the HNN. Finally, Section IV con-
cludes the paper.

2 Hypercube Neural Network Algorithm

2.1 Hypercube without neurons

One hypercube is assigned for each class in the data set. Assume that a given
training set T' consists of n patterns (1, ..., z,), where z; belongs to R?, where d
is the dimensionality of the patterns. The training patterns x; belong m classes.
Let us denote a class ¢ made of the patterns (zf,...,z}). A hypercube h° is
defined as

he={y° € Rd,hminj <=y <= hmazj,j =1,...,d},
where hmin§ and hmam§ are the minimum and maximum values on dimension
j of all patterns in class c, i.e.

- ¢ . c c
hminj = min(zy;,...,z};),

c __ c c
hmaz; = max(z{;,...,z;).

A pattern is said to belong to a hypercube if it is inside the hypercube. If the
pattern belongs to only one hypercube then it is classified according to the class
label of that hypercube. If a pattern belongs to more than one hypercube the
pattern is classified as belonging to the hypercube that contains the maximum
number of training patterns. If the hypercube corresponds to the correct class for
the pattern then the classification error is 0, otherwise 1. The performance of the
classification is measured as the percentage of the correctly classified patterns.
In the case of the testing set the maximum number of dimensions containing the
pattern determines which hypercube the pattern belongs to.

2.2 Hypercube with simple neurons

Using the training patterns we define m hypercubes corresponding to the m
classes as described in A. We associate one neuron with each hypercube h¢ and
denote the weight vector for that neuron with

W = (W ., w).
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Sample architecture of the Hypercube Neural network is shown in (Fig. 1) for a
3 class problem.

: hmax
hmin
Input Pattern Hypercube Neurons

Fig. 1. Hypercube Neural Network Architecture for 3 class problem

The weight components are initialized to }2 at the beginning of the training
process. Neurons are only trained with patterns that are in overlapping regions
of hypercubes. In that case, we train the hypercube neurons of all the hypercubes
to which the pattern belongs. The activation for each neuron is calculated as the
sum of the weighted absolute differences between the pattern attributes values
and the corresponding minimum hypercube values:

d

F(S) = F(Z w§ |z§ — hmin

Cc

J

); (1)

Jj=1

where F' is the activation function. The activation function could be a simple
linear function, a piecewise linear function, a sigmoid or an adaptive function.
The |:U;’ — hmin§| terms in effect provide the coordinates of the pattern within
the hypercube, taking the lower left vertex of the hypercube as the origin: in
other words, the vector of the pattern within the hypercube space.

The weights associated with the neurons for those hypercubes that contain
the pattern are updated using the formula:

C

wj,new

:w§’01d+)\e|x§ —hminﬂ,j =1,.,d, (2)
where A is the learning rate for the weights set to a small number (e.g. 0.01)
and e is the classification error. The classification error is determined as follows.
If a pattern belongs to more than one hypercube then we check whether the
pattern’s class corresponds to the hypercube class and assign the classification
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error e = 1 — F(S), otherwise e = —F(S). If a pattern belongs to only one
hypercube and the pattern$ class corresponds to the class of the hypercube,
then the error e = 0.

To calculate the performance of the method we use an approach that is
similar to the way classification error is determined during the training process.
If a pattern belongs to only one hypercube and the pattern’s class coincides
with the hypercube class then the classification error is 0, otherwise 1. In the
case of the training set, when a pattern belongs to only one hypercube the
classification error is 0. If the pattern belongs to more than one hypercube then
the hypercube with the highest activation determines the membership of the
pattern and subsequently the classification error, i.e. 0 if the class of the pattern
and the hypercube’s class are the same, 1 otherwise. If the pattern does not
belong to any of the hypercubes then the highest number of dimensions within
range determines the membership. When there is more than one hypercube
with that maximum number of dimensions then the highest neuron activation is
taken into account to define the membership and the classification error. Finally,
if all of the pattern’s dimensions are outside the range of the dimensions of all
hypercubes then the classification error is set to 1. The performance is calculated
as the percentage of the correctly classified patterns.

2.3 Hypercube with adaptive activation functions

In this section we describe the algorithm when the associated activation func-
tions with each neuron/hypercube are adaptive piecewise linear functions. The
algorithm combines the simultaneous adaptation of both the weights and the
shape of the individual neuron activation functions as in the case of the Adap-
tive Function Neural Network introduced in [3], [2]. This is a type of modal
learning [11] which involves the strategic combination of modes of adaptation
and learning within a single artificial neural network structure. Two or more
modes may proceed in parallel in different parts of the neural computing struc-
ture (layers and neurons), or they occupy the same part of the structure, and
there is a mechanism for allowing the neural network to switch between modes.

The algorithm is the same the one described in subsection B but the activa-
tion functions and the formula for updating the weights are different. Moreover,
the activation functions are adapted during training. The weight components
are initialised the same way as in B, but in addition they are normalised, in
order to provide a stable range over which the functions can be adapted. We
calculate the range of the intervals for the piecewise linear activation functions
using the minimum and maximum value for the sums from formula (1) for all
hypecrubes and training patterns. Then the activation functions values for each
neuron are initialised to random numbers between 0 and 1 with function points
evenly spaced across the calculated range. The number of points (intervals) in
the activation piecewise functions is set according to the required precision. This
is based on the smallest interval that is significant in the data set. During the
training we calculate F'(S) using (1), and find the two neighbouring points that
bound F'(S), which we denote with P;_; and P;.
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We denote the values of the activation function at the points P;_; and P; as
Fuval; and Fval;— respectively, and the slope of the activation function between
these two points as F'slope;. These values will be adapted in proportion to their
proximity to F(S). Following the algorithm from subsection B we update the
weights and the activation functions in parallel for the hypercubes that contain
a training pattern using:

c

wj,new

ji=1,....d

= wj 514 + AeF'slope; |a:§ — hmin§
Fval?®™ = Fuval; + peg;
Fval?*? = Fval; 1 + peg;—1,

where the notations for the weights update are the same as in subsection B,
F'slope; is the slope of the activation function at the particular interval, u is the
learning rate for the activation functions set to a small number (e.g. 0.1). The
quantities ¢; and ¢;_; are the proximal-proportional values used to apportion
the function adaptation across the two function points that bound the weighted
sum input to the function, according to their proximity to the weighted sum
input:

P, -8
% =5 5

P — P4
N |
qi—1 = Pi — Pi—l

The classification error e is calculated the same way as in subsection B. Fig. 2
illustrates an adaptive linear piecewise function.

WWL/ ~,

P, S P,

Fig. 2. Adaptive linear piecewise activation function

3 Experiments and Results

A range of data sets are chosen to represent a variety of learning challenges. They
vary in terms of the number of input variables, the number of classes, and the
level of separability of the classes. Since they are all known and freely available
they provide useful benchmark comparisons with a number of neural computing
and other machine learning techniques.
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3.1 Data Sets

Animal data The Animal data presents a simple classification problem. It is
artificial data and consists of 16 animals described by 13 attributes such as size,
number of legs etc. [12]. The 16 animals are grouped into three classes (the first
one represents bird, the second represents carnivore and the third represents
herbivore).

Breast Cancer Wisconsin This data set was obtained from the University
of Wisconsin Hospitals, Madison from Dr. William H. Wolberg [13], [14]. The
data set used in the experiments consists of 683 patterns, 9 attributes and 2
classes with distribution 65.5% and 34.5%.

Ecoli The Ecoli data set contains 336 patterns with 7 attributes and 8 classes,
which are the ’localization sites’ [15]. 91% of the patterns belong to 4 classes and
the rest to the remaining 4 classes.

Iris data The Iris data set has three classes setosa, virsicolor and virginica
[16], [17]. The iris data has 150 patterns, each with 4 attributes. The class dis-
tribution is 33.3% for each of 3 classes. One of the classes is linearly separable
from the other two, and the two are linearly inseparable from each other.

Optical and pen-based recognition of handwritten digits (OCR)
data The OCR data set [18], [19] consists of 3823 training and 1797 testing
patterns. Each pattern has 64 attributes which are integer numbers between 0
and 16. There are 10 classes corresponding to the digits 0 to 9. The 64 attributes
are extracted from normalised bitmaps of handwritten digits by 43 people.

The experiments with the OCR data set use the already existing division of
training and testing Patterns, 3828 and 1797 respectively, as originally proposed
by Kaynak [19]. This facilitates direct performance comparisons with alternative
algorithms that have been applied to the same data.

Pima Indians Diabetes The data set originates from the National Institute
of Diabetes and Digestive and Kidney Diseases donated in 1990 by V. Sigillito,
The Johns Hopkins University. It has 768 patterns, 8 numeric attributes and 2
classes with distribution 65% and 35%.

Tic-Tac-Toe Endgame This data set encodes the complete set of possible
board configurations at the end of tic-tac-toe games, where ”"x” is assumed to
have played first [20]. The target concept is ”win for x” (i.e., true when ”x” has
one of 8 possible ways to create a ”three-in-a-row”). There are 958 patterns, 9
attributes and 2 classes with distribution 65.3% and 34.7%.

Yeast This data set [15] consists of 1484 patterns, 7 attributes and 10 classes
with most of patterns belonging to 4 classes.

Wine data The Wine data set is the result of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars [21].
The analysis determines the quantities of 13 constituents (input variables) found
in each of the three types of wines. There are 178 patterns with the following
distribution: class 1 (59 patterns), class 2 (71 patterns), class 3 (48 patterns).

Zoo data This is a simple data set with 101 patterns, 16 attributes and 7
classes.
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3.2 Experiments

In the experiments, 20% selections of the patterns of each data set are allocated
for testing and the remaining 80% form the training set. For each run the training
and testing patterns are selected at random from the entire data set. The results
are based on 10 runs. The Hypercube algorithm with a simple neuron requires
the learning rate for the weight learning to be set as well as the number of epochs.
The experiments for the data sets under investigation show that the algorithm
is not sensitive to the learning rate which is set to a small number between 0.01
and 0.1. The number of epochs required for convergence is between 100 and 200.
For the Hypercube algorithm with adaptive function the number of points for
the piecewise functions has to be set, as well as the learning rates for the weights
and the adaptive functions. The experiments reveal that 500 epochs are sufficient
for training in all cases and the learning rates have to be small numbers between
0.01 and 0.1. The algorithm is most sensitive on the number of function points
which varies between 10 and 50 for the data sets under consideration.

3.3 Results

Table 1 presents the results from the experiments. The notations in the Table 1
are as follows: HC is the hypercube algorithm without neurons, HCN is the hy-
percube algorithm with a simple neuron and HCAF is the hypercube algorithm
with adaptive function. Table 2 presents comparative results for 7 of the data
sets based on the results with three other algorithms: the classic Nearest Neigh-
bour Classifier (INN), the Batch Nested Generalised Exemplar(BNGE) and the
Evolutionary Selection by CHC (EHS-CHC)[8]. The BNGE is a batch version
of the first NGE model and it addresses some of the limitations of NGE [4]. We
compare with these methods because BNGE appears to yield the best results
for the 7 data sets in Table 2, while the EHS-CHC gives the best results average
results over all data sets as reported in [8]. The HCAF average results are better
than the average results of the BNGE and EHS-CHC over the selected 7 data
sets. HCAF gives better results in 4 of the data sets compared to BNGE and is
very close in 2 others. HCAF performs better in 6 data sets in comparison to
EHS-CHC.

The results for the Breast cancer and OCR data sets are comparable to the
results obtained with other classifiers. For example, 95.9% (96.5% for HCAF)
accuracy is reported for the Breast cancer data set in [22] using a multisurface
method of pattern separation and linear programming. Using combination of
four learning modes, Snap-Drift and Adaptive Functions in [2], 94.99% (92% for
HCAF) accuracy is obtained for the OCR. data set.

4 Conclusions

Hypercube is computationally very efficient, especially in comparison to NGE
methods. Both in terms of computation and classification, the results achieved
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Table 1. Mean % correct classification for train and test sets based on 10 runs. Stan-
dard deviation is given in italic below the mean %.

Method HC HC HCN HCN HCAF HCAF
train  test train  test train  test

Animal 100 92 100 100 100 100
st. dev. 0 11.2 0 0 0 0

Breast 90.3 90.1 93.9 92.3 98.2 96.5
st. dev 1.1 2.2 2.0 2.7 0.6 1.7
Ecoli 78.5 72.9 92 82.4  99.6 84.4
st. dev. 1.8 5.1 0.9 2.6 0 2.7
Iris 95.1 94.4  98.9 94.6 98.8 95.8
st. dev. 1.9 2.9 0.8 1.2 1.8 1.4
OCR 36 36 97 91 99 92

st. dev. 0 0 0 0 0 0

Pima 67.6 66.4 67.5 65.5 77.1 76.6
st. dev. 1.8 1.8 1.6 2.5 0.7 3.1
Tic-tac 65.5 36.9 987 98.2 98.7 98.2
st. dev. 1.1 3.7 0.4 0.9 0.4 0.6
Wine 94.7 93.1 10 96.7 100 98.3
st. dev. 0.9 3.2 0 2.2 0 2.2
Yeast  35.2 34.8 54.3 51.3 57.4 55.9
st. dev. 0.9 2.8 1.5 2.5 1.1 1.5
Z.00 96.3 75 98.3 94 100 96.5
st. dev. 5.7 5.4 0.4 5.1 0 2.4

Table 2. Mean % correct classification test sets - comparison with classic and best
hyperrectangle methods

Method INN HCAF BNGE EHS-CHC
Ecoli 80.7 84.4 82.16 81.54

Iris 93.3 95.8 96 94.0

Pima 70.33 76.6 72.78 75.01
Tic-tac 73.07 98.2 92.07 92.06
Wine 95.52 98.3 96.6 94.31
Yeast 50.47 55.9 57.35 56.34

Zoo 92.81 96.5 96.83 95.00

Average 79.45 86.53 84.83 84.04
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demonstrate the advantages of a simplified hypercube method that is treated as
a mode of learning. Rather than perform the computationally intensive process
of optimising hyperrectangles, we achieve high levels of classification by com-
bining hypercubes with other modes. Whilst these modes carry a computational
overhead, they are only invoked for the minority of patterns that reside in the
overlapping regions of hypercubes. Each class is characterised by only one hyper-
cube and a single neuron, and so the computation required scales linearly with
the number of classes. The combination of the hypercube and neural modes
of learning proves effective on the range of data sets considered in this work.
Further investigation will focus on combining hypercubes with alternative unsu-
pervised and supervised forms of modal learning, and applying the techniques
to wider range of problems including large scale data sets. A receiver operating
characteristic (ROC) analysis will be also carried out to evaluate the prosed al-
gorithms in terms of true positive, false positive, false negative and tru engative
values.
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