Complexity of universality and related problems for partially ordered NFAs

Abstract : Partially ordered nondeterministic finite automata (poNFAs) are NFAs whose transition relation induces a partial order on states, that is, for which cycles occur only in the form of self-loops on a single state. A poNFA is universal if it accepts all words over its input alphabet. Deciding universality is PSpace-complete for poNFAs, and we show that this remains true even when restricting to a fixed alphabet. This is nontrivial since standard encodings of alphabet symbols in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound can be obtained if we require that all self-loops in the poNFA are deterministic, in the sense that the symbol read in the loop cannot occur in any other transition from that state. We find that such restricted poNFAs (rpoNFAs) characterize the class of R-trivial languages, and we establish the complexity of deciding if the language of an NFA is R-trivial. Nevertheless, the limitation to fixed alphabets turns out to be essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets is PSpace-complete. Based on a close relation between universality and the problems of inclusion and equivalence, we also obtain the complexity results for these two problems. Finally, we show that the languages of rpoNFAs are definable by deterministic (one-unambiguous) regular expressions, which makes them interesting in schema languages for XML data.
Type de document :
Article dans une revue
Information and Computation, Elsevier, 2017, 255, pp.177 - 192. 〈10.1016/j.ic.2017.06.004〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571398
Contributeur : Michaël Thomazo <>
Soumis le : mercredi 2 août 2017 - 13:52:09
Dernière modification le : jeudi 11 janvier 2018 - 06:19:44

Fichier

Complexity_of_Universality_and...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Markus Krötzsch, Tomáš Masopust, Michaël Thomazo. Complexity of universality and related problems for partially ordered NFAs. Information and Computation, Elsevier, 2017, 255, pp.177 - 192. 〈10.1016/j.ic.2017.06.004〉. 〈hal-01571398〉

Partager

Métriques

Consultations de la notice

104

Téléchargements de fichiers

23