Cascaded Window Memoization for Medical Imaging

Abstract : Window Memoization is a performance improvement technique for image processing algorithms. It is based on removing computational redundancy in an algorithm applied to a single image, which is inherited from data redundancy in the image. The technique employs a fuzzy reuse mechanism to eliminate unnecessary computations. This paper extends the window memoization technique such that in addition to exploiting the data redundancy in a single image, the data redundancy in a sequence of images of a volume data is also exploited. The detection of the additional data redundancy leads to higher speedups. The cascaded window memoization technique was applied to Canny edge detection algorithm where the volume data of prostate MR images were used. The typical speedup factor achieved by cascaded window memoization is 4.35x which is 0.93x higher than that of window memoization.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.275-284, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_33〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571460
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 16:22:07
Dernière modification le : vendredi 1 décembre 2017 - 01:16:24

Fichier

978-3-642-23960-1_33_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Farzad Khalvati, Mehdi Kianpour, Hamid Tizhoosh. Cascaded Window Memoization for Medical Imaging. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.275-284, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_33〉. 〈hal-01571460〉

Partager

Métriques

Consultations de la notice

40

Téléchargements de fichiers

20