Reliable Probabilistic Prediction for Medical Decision Support

Abstract : A major drawback of most existing medical decision support systems is that they do not provide any indication about the uncertainty of each of their predictions. This paper addresses this problem with the use of a new machine learning framework for producing valid probabilistic predictions, called Venn Prediction (VP). More specifically, VP is combined with Neural Networks (NNs), which is one of the most widely used machine learning algorithms. The obtained experimental results on two medical datasets demonstrate empirically the validity of the VP outputs and their superiority over the outputs of the original NN classifier in terms of reliability.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.265-274, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_32〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571481
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 16:22:23
Dernière modification le : vendredi 1 décembre 2017 - 01:16:25

Fichier

978-3-642-23960-1_32_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Harris Papadopoulos. Reliable Probabilistic Prediction for Medical Decision Support. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.265-274, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_32〉. 〈hal-01571481〉

Partager

Métriques

Consultations de la notice

32

Téléchargements de fichiers

18