Applying Conformal Prediction to the Bovine TB Diagnosing

Abstract : Conformal prediction is a recently developed flexible method which allows making valid predictions based on almost any underlying classification or regression algorithm. In this paper, conformal prediction technique is applied to the problem of diagnosing Bovine Tuberculosis. Specifically, we apply Nearest-Neighbours Conformal Predictor to the VETNET database in an attempt to allow the increase of the positive prediction rate of the existing Skin Test. Conformal prediction framework allows us to do so while controlling the risk of misclassifying true positives.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.449-454, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_52〉
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571484
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 16:22:25
Dernière modification le : vendredi 1 décembre 2017 - 01:16:25

Fichier

978-3-642-23960-1_52_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Dmitry Adamskiy, Ilia Nouretdinov, Andy Mitchell, Nick Coldham, Alex Gammerman. Applying Conformal Prediction to the Bovine TB Diagnosing. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.449-454, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_52〉. 〈hal-01571484〉

Partager

Métriques

Consultations de la notice

46

Téléchargements de fichiers

10