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Abstract. The main aim of this paper is to compare the results of sev-
eral methods of prediction with confidence. In particular we compare the
results of Venn Machine with Platt’s Method of estimating confidence.
The results are presented and discussed.
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1 Introduction

There are many machine learning algorithms that allow to make classification
and regression estimation. However, many of them suffer from the absence of a
confidence measure to assess the risk of error made by an individual prediction.

Sometimes, however, the confidence measure is introduced but very often
it is an ad hoc measure. An example of this is a Platt’s algorithm developed
to estimate confidence for SVM[1]. We recently developed a set of new machine
learning algorithms [2,3] that allow not just to make prediction but also to supply
this prediction with a measure of confidence. What’s more important is that this
measure is valid and based on a well-developed algorithmic randomness theory.

The algorithm introduced in this paper is Venn Machine[3], a method that
outputs the prediction with an interval of probability that prediction is correct.
What follows is an introduction to Venn Machine and Platt’s Method, then
description of used data and results of experiments.

1.1 Venn Machine

Let us consider a training set consisting of object, xi, and label, yi, as pairs:
(x1, y1), . . . , (xn−1, yn−1). The possible labels are finite, that is, y ∈ Y. Our task
is to predict the label yn for the new object xn and give the estimation of the
likelihood that our prediction is correct.

In brief, Venn Machine operates as follows. First, we define a taxonomy that
can divide all examples into categories. Then, we try all the possible labels of the
new object. In each attempt, we can calculate the frequencies of the labels in the



category which the new object falls into. The minimum frequency is called the
quality of this column. At last, we output the assumed label with the highest
quality among all the columns as our prediction and output the minimum and
the maximum frequencies of this column as the interval of the probability that
this prediction is correct.

Taxonomy (or, more fully, V enn taxonomy) is a function An, n ∈ N of the
space Z(n−1) × Z that divide every example into one of the finite categories τi,
τi ∈ T. Then we consider zi as the pair (xi, yi),

τi = An({z1, . . . , zi−1, zi+1, . . . , zn}, zi) (1)

We assign zi and zj to the same category if and only if

An({z1, . . . , zi−1, zi+1, . . . , zn}, zi) = An({z1, . . . , zj−1, zj+1, . . . , zn}, zj) (2)

Here is an example of a simplest taxonomy based on 1-nearest neighbour (1NN).
We assign the category of an example the same to the label of its nearest

neighbour based on the distance between two objects (e.g. Euclidean distance).

An({z1, . . . , zi−1, zi+1, . . . , zn}, zi) = τi = yj (3)

where
j = arg min

j=1,...,i−1,i+1,...,n
||xi − xj || (4)

For every attempt (xn, y), of which the category is τ , let py be the empirical
probability distribution of the labels in category τ .

py{y′} :=
|{(x∗, y∗) ∈ τ : y∗ = y′}|

|τ |
(5)

this is a probability distribution on Y. The set Pn := {py : y ∈ Y} is the
multiprobability predictor consists of K probabilities, where K = |Y |.

After all attempts, we get a K ×K matrix P . Let the best column with the
highest quality, which is the minimum entry of a column, be jbest. jbest is our
prediction and the interval of the probability that the prediction is correct is

[ min
i=1,...,K

Pi,jbest , max
i=1,...,K

Pi,jbest ] (6)

1.2 Platt’s Method

Standard Support Vector Machines (SVM) [4] only output the value of sign(f(xi)),
where f is the decision function. So we can say that SVM is a non-probabilistic
binary linear classifier. But in many cases we are more interested in the belief
that the label should be +1, that is, the probability P (y = 1|x). Platt introduced
a method to estimate posterior probabilities based on the decision function f by
fitting a sigmoid for SVM.

P (y = 1|f) =
1

1 + exp(Af +B)
(7)



The best parameter A and B are determined by using maximum likelihood
estimation from a training set (fi, yi). Let us use regularized target probabilities
ti as the new training set (fi, ti) defined as:

ti =

{
N++1
N++2 , if yi = +1

1
N−+2 , if yi = −1

(8)

where N+ is the number of positive examples, while N− is the number of negative
examples. Then, the parameters A and B are found by minimizing the negative
log likelihood of the training data, which is a cross-entropy error function.

−
∑
i

(ti log (pi) + (1− ti) log(1− pi)) −→ min
pi

(9)

where the solution is

pi =
1

1 + exp(Afi +B)
(10)

With parameters A and B we can calculate the posterior probability that the
label should be +1 of every example using (10). But in many cases, probability
that the prediction is correct is more useful and easy to compare with Venn
Machine. In this binary classification problem, one example with the probability
pi means its label should be +1 with the likelihood of pi, that is to say, its
label should be −1 with the likelihood of 1 − pi. So we use the complementary
probability when the probability is less than the optimal threshold (in this paper
we set it to 0.5 as explained later).

2 Data Sets

The data sets we used in this paper is Salmonella mass spectrometry data pro-
vided by VLA3 and Wisconsin Diagnostic Breast Cancer (WDBC) data from
UCI.

The aim of the study of Salmonella data is to discriminate Salmonella vac-
cine strains from wild type field strains of the same serotype. We analysed the
set of 50 vaccine strains (Gallivav vaccine strain) and 43 wild type strains. Both
vaccine and wild type strains belong to the same serotype Salmonella enteritidis.

Each strain was represented by three spots; each spot produced 3 spot repli-
cates. Therefore, there are 9 replicates per strain. Pre-processing was applied to
each replicate and resulted in representation of each mass spectra as a vector of
25 features corresponding to the intensity of most common peaks. The median
was later taken for each feature across replicates of the same strain. In the data
set, label +1 corresponds to vaccine strains, label −1 to wild type strains. Table
1 shows some quantitive properties of the data set.

In Figure 1, there is a plot of the class-conditional densities p(f |y = ±1) of
Salmonella data. The plot shows histograms of the densities of the data set with
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Table 1. Salmonella Data Set Features

Number of
Instances

Number of
Attributes

Number of Positive
Examples

Number of Negative
Examples

93 25 50 43

bins 0.1 wide, derived from Leave-One-Out Cross-Validation. The solid line is
p(f |y = +1), while the dot line is p(f |y = −1). What we observed from the plot
is that this a linearly non-separable data set.

Fig. 1. The histograms for p(f |y = ±1) for a linear SVM trained on the Salmonella
Data Set.

The second data set is Wisconsin Diagnostic Breast Cancer data. There are ten
real-valued features computed for each cell nucleus, resulting in 30 features in the
data set. These features are from a digitized image of a fine needle aspirate (FNA)
of a breast mass. They describe characteristics of the cell nuclei present in the
image. And the diagnosis includes two predicting fields, label +1 corresponding
to Benign and label−1 corresponding to Malignant. Data set is linearly separable
using all 30 input features. Table 2 shows some quantitive properties of the data
set.



Table 2. Wisconsin Diagnostic Breast Cancer Data Set Features

Number of
Instances

Number of
Attributes

Number of Positive
Examples

Number of Negative
Examples

569 30 357 212

3 Empirical Result

There are two experiments in this paper to compare the performance of Venn
Machine with the SVM+sigmoid combination in Platt’s Method.

3.1 Taxonomy Design

The taxonomy used in both experiments is newly designed and it is based on
the decision function the same as Platt’s Method.

Let the number of categories KT = |T | and the taxonomy is further referred
to as KT -SVM. Then we train an SVM for the whole data {(x1, y1), . . . , (xn, yn)}
and calculate the decision values for all examples. We put the examples into the
same category if the decision values of them are in the same interval which is
generated depending on KT .

For an instance, if KT = 8, the intervals can be (−∞,−1.5], (−1.5,−1.0],
(−1.0,−0.5], (−0.5, 0], (0, 0.5], (0.5, 1.0], (1.0, 1.5], (1.5,∞).

3.2 Experiments

The first experiment dealing with Salmonella data set is using a radial basis
function (i.e. RBF) kernel in SVM and a Venn Machine with 8-SVM taxonomy
since Salmonella data is a linearly non-separable data set . And the second exper-
iment dealing with WDBC data set is using a linear kernel in SVM (i.e. Standard
SVM) and a Venn Machine with 6-SVM taxonomy. The Venn Machine can be
compared to Platt’s Method and the raw SVM for accuracies and estimated
probabilities. Assuming equal loss for Type I and Type II errors, the optimal
threshold for the Platt’s Method is P (y = 1|f) = 0.5. And all of the results in
this paper are presented using Leave-One-Out Cross-Validation (LOOCV).

Table 3 shows the parameters setting for experiments. The C value is the
cost for the SVM. And the Underlying Algorithm is the algorithm used in the
taxonomy for Venn Machine and the kernel used in SVM. The Kernal Parameter
is σ, the parameter of RBF.

Table 4 is the results of experiments. The table lists the accuracies and the
probabilistic outputs for raw SVM, Platt’s Method, and Venn Machine using
both data sets. For Platt’s Method, the probabilistic output is the average es-
timated probability that the prediction is correct. And for Venn Machine, the
probabilistic output is the average estimated interval of probability that the
prediction is correct.



Table 3. Experimental Parameters

Data Set Task C Underlying Algorithm Kernal
Parameter

Salmonella SVM 1 RBF 0.05
Platt’s Method 1 RBF 0.05
Venn Machine 1 8-SVM RBF 0.05

WDBC SVM 1 Linear
Platt’s Method 1 Linear
Venn Machine 1 6-SVM Linear

Table 4. Experimental Results

Data Set Task Accuracy Probabilistic Outputs

Salmonella SVM 81.72%
Platt’s Method 82.80% 84.77%
Venn Machine 90.32% [83.49%, 91.03%]

WDBC SVM 97.72%
Platt’s Method 98.07% 96.20%
Venn Machine 98.24% [97.22%, 98.27%]

3.3 Results

Table 5 lists some comparisons between two methods. As shown in the table,
Venn Machine got better results in both two data sets. For Salmonella data set,
Venn Machine got a significant improvement (7.52%) comparing with Platt’s
Method in accuracy when it used a 8-SVM RBF taxonomy. In the aspect of
probabilistic outputs, Venn Machine output an interval of probability with the
accuracy included while the probabilistic output of Platt’s Method is 1.93%
higher than the accuracy. For WDBC data set, Venn Machine increased by 0.52%
in accuracy while Platt’s Method got 0.35%. In the aspect of probabilistic out-
puts, Venn Machine output an interval of probability with the accuracy included
while the probabilistic output of Platt’s Method is 1.87% lower than the accu-
racy.

Sensitivity and specificity are also calculated and shown in Table 5. For
Salmonella Data Set, Venn Machine got a outstanding result in sensitivity,
16.00% better than Platt’s Method. It is obvious that Venn Machine got a better
ability of identity salmonella vaccine. And for WDBC Data Set, they got approx-
imate results in both sensitivity and specificity. It is hard to tell which method
is better, but we can still find Venn Machine has made a slight improvement in
both aspects.

Another interest thing we observed is that Platt’s Method performs better



on linearly separable data set (that is WDBC in this paper) than linearly non-
separable data set (that is Salmonella data set), while Venn Machine can achieve
good results on both data sets. But it needs conducting experiments on more
data sets to prove this.

Table 5. Comparisons Between Two Methods

Data Set Task Accuracy Probabilistic
Outputs

Sensitivity Specificity

Salmonella Platt’s Method 82.80% 84.77% 76.00% 67.44%
Venn Machine 90.32% [83.49%, 91.03%] 92.00% 67.44%

WDBC Platt’s Method 98.07% 96.20% 97.52% 99.02%
Venn Machine 98.24% [97.22%, 98.27%] 97.53% 99.50%

Table 6 shows several examples in Salmonella data set predicted by Venn
Machine and Platt’s Method. For each example, the table contains the true label,
prediction of Venn Machine and intervals of probability that the prediction is
correct, the prediction of Platt’s Method and the probabilistic outputs. The table
indicates that both methods can be proper or erroneous. For instance, wild type
strain 2, 4, 5 and vaccine strain 44 are both wrong for the two methods.

Table 6. Prediction for Individual Examples in Salmonella Data Set

No. True
Label

Prediction
of VM

Probabilistic Outputs of
VM

Prediction
of PM

Probabilistic
Outputs of PM

1 −1 −1 [88.89%, 100.00%] −1 95.65%
2 −1 +1 [60.00%, 63.33%] +1 77.72%
3 −1 −1 [88.89%, 100.00%] −1 98.49%
4 −1 +1 [60.00%, 63.33%] +1 63.98%
5 −1 +1 [60.00%, 63.33%] +1 56.57%
6 −1 −1 [76.19%, 80.95%] −1 78.57%
7 −1 −1 [76.19%, 80.95%] −1 71.69%

. . . . . . . . . . . . . . . . . .
44 +1 −1 [80.95%, 85.71%] −1 71.92%
45 +1 +1 [90.00%, 93.33%] +1 96.91%
46 +1 +1 [90.00%, 93.33%] +1 77.96%
47 +1 +1 [56.67%, 60.00%] −1 61.81%
48 +1 +1 [56.67%, 60.00%] −1 58.43%
49 +1 +1 [90.00%, 93.33%] +1 96.15%
50 +1 +1 [90.00%, 93.33%] +1 94.12%
. . . . . . . . . . . . . . . . . .



4 Conclusion

From our experience on these data sets we see the following. The Platt’s estima-
tion for the accuracy of prediction can be too optimistic or too pessimistic, while
Venn’s bounds estimate it more correctly: two-sided estimation is safer than sin-
gle one. As for the accuracy itself, we see that if Platt’s and Venn Machines are
based on the same kind of SVM, accuracy of Venn Machine is also a bit better.
This may be because Venn Machine do not rely on a fixed transformation of the
SVM output, but makes its own transformation for each taxonomy, based on the
actual data set.

We applied different probabilistic approaches to the dataset of Salmonella
strains. As it can be seen from Figure 1 and Table 6, this data set is hard to
separate: there are few errors in the class +1, but large part of examples from
the class −1 seems to be hardly distinguishable from the class +1. This is why
in this case we need to have individual assessment of prediction quality: being
unable to make a confident prediction on any example, we still can select some
of them where our prediction has higher chance to be correct.

The results have been observed on two particular data sets. We plan to con-
duct experiments on bigger data sets. Another possible direction is to compare
Venn Machine and Platt’s Method theoretically.
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