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Abstract. In this paper, we propose a clustering technique for the
recognition of pigmented skin lesions in dermatological images. It is
known that computer vision-based diagnosis systems have been used
aiming mostly at the early detection of skin cancer and more specifically
the recognition of malignant melanoma tumor. The feature extraction is
performed utilizing digital image processing methods, i.e. segmentation,
border detection, color and texture processing. The proposed method
combines an already successful clustering technique from the field of pro-
jection based clustering with a projection pursuit method. Experimental
results show great performance on detecting the skin cancer.
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1 Introduction

Several studies found in literature have proven that the analysis of dermatological
images and the quantification of tissue lesion features may be of essential impor-
tance in dermatology [1, 3]. The main goal is the early detection of malignant
melanoma tumor, which is among the most frequent types of skin cancer, ver-
sus other types of non-malignant cutaneous diseases. The interest in melanoma
is due to the fact that its incidence has increased faster than that of almost
all other cancers and the annual incidence rates have increased on the order of
3− 7% in fair-skinned populations in recent decades [2].

The advanced cutaneous melanoma is still incurable, but when diagnosed at
early stages it can be cured without complications. However, the differentiation of
early melanoma from other non-malignant pigmented skin lesions is not trivial
even for experienced dermatologists. In several cases, primary care physicians
underestimate melanoma in its early stage [3]. To deal with this problem in
several cases we utilize data mining methods. In particular, using clustering could
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be the key step to understand the differences between the types and subtypes of
skin lesions.

In this paper, based on an already saucerful clustering technique, we propose
a new algorithmic framework for the skin lesion characterization. The paper
is organized as follows: in Section 2 we present the image dataset, as well as
the preprocessing and segmentation, and feature extraction techniques applied.
Next, in Section 4 we present the ICA model. Section 5 is devoted to the proposed
method and in Section 6 we investigate the efficiency of the proposed technique.
The paper ends with concluding remarks.

2 Skin Lesions Image Analysis

The image data set used in this study is an extraction of the skin database
that exists at the Vienna and the Athens General Hospital, kindly provided
by Dr. Ganster. The whole data set consists of 3631 images, 972 of them are
displaying nevus (dysplastic skin lesions), 2590 featuring non-dysplastic lesions
and the rest 69 images contain malignant melanoma cases. The number of the
melanoma images set is not small considering the fact that malignant melanoma
cases in a primordial state are very rare. It is very common that many patients
arrive at specialized hospitals with partially removed lesions.

The first step in an image analysis workflow is image segmentation, which in
this case concerns the separation of the skin lesion from the healthy skin. For the
special problem of skin lesion segmentation, mainly region-based segmentation
methods are applied [5, 9]. A simple approach is thresholding, which is based
on the fact that the values of pixels that belong to a skin lesion differ from the
values of the background.

In this study, a more sophisticated approach of a local/adaptive thresholding
technique was adopted, where the window size, the threshold value and degree of
overlap between successive moving windows were the procedure parameters. The
details of this method may be found in [8]. Image analysis and feature extraction
is performed by measurements on the pixels that represent a segmented object
allowing non-visible features to be computed. Several studies have also proven the
efficiency of border shape descriptors for the detection of malignant melanoma
on both clinical and computer based evaluation methods [7, 11]. Three types of
features are utilized in this study: Border Features which cover the A and B
parts of the ABCD-rule of dermatology, Color Features which correspond to the
C rules and Textural Features, which are based on D rules. More specifically the
extracted features are as follows:

Border features

– Thinness Ratio measures the circularity of the skin lesion defined as:
TR = 4πArea/(perimeter)2.

– Border Asymmetry is computed as the percent of non-overlapping area after
a hypothetical folding of the border around the greatest diameter or the
maximum symmetry diameters.
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– The variance of the distance of the border lesion points from the centroid
location.

– Minimum, maximum, average and variance responses of the gradient opera-
tor, applied on the intensity image along the lesion border.

Color Features

– Plain RGB color plane average and variance responses for pixels within the
lesion.

– Intensity, Hue, Saturation Color Space average and variance responses for
pixels within the lesion: I = R+G+B

3 , S = 1− 3
R+G+B [min(R,G,B)], and

H =







W , G > B,
2π −W, G < B,

0 , G = B,
and W = arccos[

R(1− 1
2 (G+B))

(R−G)2 + (R−B)(G−B)
1

2

].

– Spherical coordinates LAB average and variance responses for pixels within
the lesion:
L =

√
R2 +G2 +B2, AngleA = cos−1[BL ],

and AngleB = cos−1[ R
L sin(AngleA) ].

Texture features

– Dissimilarity, d, which is a measure related to contrast using linear increase
of weights as one moves away from the GLCM (gray level co-occurrence

matrix) diagonal: d =
∑N−1

i,j=0 Pi,j‖i − j‖, where i and j denote the rows
and columns, respectively, N is the total number of rows and columns, and
Pi,j =

Vi,j
∑N−1

i,j=0
Vi,j

is the normalization equation in which Vi,j is the DN value

of the cell i, j in the image window.
– Angular Second Moment, ASM, which is a measure related to orderliness,

where Pi,j is used as a weight to itself: ASM =
∑N−1

i,j=0 iP
2
i,j .

– GLCM Mean, µi , which differs from the familiar mean equation in the
sense that it denotes the frequency of the occurrence of one pixel value
in combination with a certain neighbor pixel value and is given by µi =
∑N−1

i,j=0 i(Pi,j). For the symmetrical GLCM, holds that µi = µj .
– GLCM Standard Deviation, σi, which gives a measure of the dispersion of

the values around the mean: σi =
√

∑N−1
i,j=0 Pi,j(i− µi)2.

3 Clustering Background

The “divisive” hierarchical clustering techniques produce a nested sequence of
partitions, with a single, all-inclusive cluster at the top. Starting from this all-
inclusive cluster the nested sequence of partitions is constructed by iteratively
splitting clusters, until a termination criterion is satisfied. Any divisive clustering
algorithm can be characterized by the way it chooses to provide answers to the
following three questions:
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Q1: Which cluster to split further?

Q2: How to split the selected cluster?

Q3: When should the iteration terminate?

The projection based divisive clustering algorithms in particular, projects
the high dimensional data onto a lower dimensional subspace to provide answers
to the questions above, in a computationally efficient manner. Note also that
certain answers to one of these questions may render obsolete one of the others.
However, this is not always the case.

To formally describe the manner in which projection based divisive clustering
algorithms operate, let us assume the data is represented by an n× a matrix D,
whose each row represents a data sample di, for i = 1, . . . , n. Finally, if A is the
matrix with columns the vectors that denote the targeted subspace, then

DP
n×k = Dn×aAa×k,

is the projection of the data onto the lower k-dimensional subspace defined by
the matrix A. The most studied technique for such data analysis is the Principal
Component Analysis (PCA) [21]. PCA can be viewed as one of many possi-
ble procedures for projection pursuit [17] and is able to compute meaningful
projections of high dimensional data [4, 13, 15, 26].

4 Independent Component Analysis

Independent component analysis (ICA) [12, 14] is a technique that finds under-
lying factors or independent components from multivariate (multidimensional)
statistical data by maximizing the statistical independence of the estimated com-
ponents. ICA defines a generative model for the observed multivariate data,
which is typically given as a large database of samples. In the model, the data
variables are assumed to be linear or nonlinear mixtures of some unknown la-
tent variables, and the mixing system is also unknown. The latent variables are
assumed non-gaussian and mutually independent, and they are called the inde-
pendent components of the observed data. These independent components can
be found by ICA. We can define ICA as follows. Let x = (x1, ..., xn) be the ran-
dom vector that represents the data and s = (s1, ..., sn) be random vector that
represents the components. The task is to transform the data x, using a linear
static transformation W , as s = Wx, into maximally independent components
s measured by some function of independence. The definition of independence
for ICA that we utilize in this work is the maximization non-gaussianity. The
most used measure of non-gaussianity is kurtosis and the second measure is given
by negentropy. Kurtosis is zero for a gaussian random variable and nonzero for
most non-gaussian random variables. Negentropy is based on the information-
theoretic quantity of (differential) entropy. The entropy of a random variable can
be interpreted as the degree of information that the observation of the variable
gives. The more random and unstructured the variable is, the larger its entropy.
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4.1 Relation to Projection Pursuit

The critical attribute of the ICA model is that we can use it to find directions
for which the 1-dimensional projected data onto these directions show the least
Gaussian distribution. It has been argued by Huber [18] and by Jones and Sib-
son [23] that the Gaussian distribution is the least interesting one, and that the
most interesting directions are those that show the least Gaussian distribution.
Interesting distribution can be a consider a distribution that captures the struc-
ture of the data. As such ICA can be considered as an 1-dimensional projection
pursuit technique for finding directions of maximum non-gaussianity.

4.2 The FastICA Algorithm

To find the direction for maximum non-gaussianity, we utilize a well known
fixed point algorithm. The FastICA algorithm [20] is a very efficient method
for maximizing the objective function with respect to the selected measure of
non-gaussianity. For this task it is assumed that the data is preprocessed by
centering and whitening. Whitening can be achieved with principal component
analysis or singular value decomposition. Whitening ensures that all dimensions
are treated equally, before the algorithm is run. In this work, we only make use
of the FastICA algorithm for one unit. The FastICA for one unit finds a direc-
tion w such that the projection DP

n×k = Dn×awa×1, maximizes nongaussianity.
Nongaussianity is here measured by the approximation of negentropy [19].

5 The Proposed Framework

A new clustering algorithm that was proposed recently [27], incorporates infor-
mation about the true clusters in the data from the density of their projections
on the principal components. Based on that principle, we introduce an new algo-
rithmic scheme that utilize the ICA model to find optimal directions to project
the data and then splits the data based on the density of their projections on
these directions. In contrast to the previous approach, in this work, we choose as
a splitting point the maximum of all the local minima of the projections density
denoted by x∗. Finally, to estimate the ICA model, the FastICA algorithm is uti-
lized. The proposed algorithmic scheme mICDC (refer to Algorithm 1) utilizes
the following criteria:

– (Stopping Criterion) ST : Let Π = {{Ci, Pi}, i = 1, . . . , k} a partition of the
data set D into k sets Ci, and the assorted projections Pi of them onto the
direction of maximum nongaussianity. Let X , be the set x∗

i of the density

estimates f̂(x∗

i ;h) of the projection Pi of the data of each Ci ∈ Π, i =
1, . . . , k. Stop the procedure when the set X is empty.

– (Cluster Selection Criterion) CS: Let Π = {{Ci, Pi}, i = 1, . . . , k} a par-
tition of the data set D into k sets Ci, and the assorted projections Pi of
them onto the direction of maximum nongaussianity. Let F be the set of the
density estimates fi = f̂(x∗

i ;h) of x
∗

i for the projection Pi of the data of each
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Ci ∈ Π, i = 1, . . . , k. The next set to split is Cj , with j = argmaxi{fi : fi ∈
F}.

– (Splitting Criterion) SPC: Let f̂ ′(x;h′) be the kernel density estimation of
the density of the projections pi ∈ P, and x⋆ the maximum of the minima.
Then construct P1 = {di ∈ D : pi 6 x⋆} and P2 = {di ∈ D : pi > x⋆}.

1 Function mICDC (D)

2 Get up the direction of maximum nongaussianity of D
3 Calculate P = Dup the projection of D to up

4 Set Π = {{D, P}}
5 repeat

6 Select an element {C,PC} ∈ Π using Cluster Selection Criterion CS

7 Split C into two sub-sets C1, C2, using Splitting Criterion SPC

8 Remove {C, PC} from Π and set Π → Π ∪ {{C1, P
C1}, {C2, P

C2}}, where

P C1 , P C2 are the projections of C1, C2 on the direction of maximum
nongaussianity up1 , up2 of C1 and C2, respectively

9 until Stopping Criterion ST is not satisfied ;
10 return Π the partition of D into |Π| clusters

Algorithm 1: The mICDC algorithm

The computational complexity of this approach, using a brute force tech-
nique, would be quadratic in the number of samples. However, it has been
shown [16, 28] that using techniques like the Fast Gauss Transform linear run-
ning time can be achieved for the Kernel Density Estimation, especially for the
one dimensional case. To find the maximum of the minima, we only need to
evaluate the density at n positions, in between the projected data points, since
those are the only valid splitting points.

6 Experimental Analysis

As defined in Section 2, the image dataset used in our experiments consists
of 3631 images; 972 of them are displaying nevus (dysplastic skin lesions),
2590 featuring non-dysplastic lesions, and the rest 69 images contain malignant
melanoma cases. The number of the melanoma images is not so small considering
the fact that malignant melanoma cases in a primordial state are very rare.

In our first experiment, in an attempt to effectively retrieve the malignant
melanoma class, we consider the problem as a two class situation. Since we know
beforehand the actual cluster number, we can control the number of clusters that
the algorithm retrieves by setting a proper value of the bandwidth parameter
for the density function. In [27] the bandwidth parameter was set by choosing a
multiple of the hopt bandwidth (“normal reference rule”), which is the bandwidth
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that minimizes the Mean Integrated Squared Error (MISE). This is given by:

hopt = σ

(

4

3n

)1/5

, (1)

where σ is the standard deviation of the data. The starting multiplier value is
set to 2 and then we set greater values in an attempt to get good clustering
results with fewer clusters. Table 1 reports the clustering results with respect
to the multiplier values. 100 experiments have been made for each case and the
mean values and the respective standard deviation are presented.

Table 1. Results with respect to the mean clustering purity and V-measure (with the
observed standard deviation in parenthesis) for several multiplier values for the full
dataset.

mICDC

Multi. Purity V-measure Clusters

2 0.9959(0.00) 0.2788(0.07) 9.40(3.06)
4 0.9974(0.00) 0.6670(0.19) 5.28(2.81)
8 0.9986(0.00) 0.9005(0.06) 3(0.92)

K-means

0.9979(0.00) 0.0673(0.00) 13(0)
0.9978(0.00) 0.1013(0.00) 7(0)
0.9878(0.00) 0.0913(0.06) 4(0)

To assess the quality of a data partition, additional external information not
available to the algorithm, such as class labels, are used [22, 24]. Consequently,
the degree of correspondence between the resulting clusters and the classes as-
signed a priori to each object can be measured. For a dataset D, let L be a set
of labels li ∈ L, for each point di ∈ D, i = 1, . . . , n, with li taking values in
{1, . . . , L}. Let a k-cluster partitioning Π = {C1, . . . , . . . , Ck}. The purity of Π
is defined as:

p(Π) =

∑k
j=1 max {|{pi ∈ Cj : li = 1, . . . , L}|}

n
, (2)

so that 0 ≤ p(Π) ≤ 1. High values indicate that the majority of vectors in each
cluster come from the same class, so in essence the partitioning is “pure” with
respect to class labels.

However, cluster purity does not address the question of whether all members
of a given class are included in a single cluster and therefore is expected to
increase monotonically with the number of clusters in the result. For this reason,
criteria like the V-measure [25] have been proposed. The V-measure tries to
capture cluster homogeneity and completeness, which summarizes a clustering
solution’s success in including every point of a single class and no others. Again,
high values corresponds to better performance. For details on how these are
calculated, the interested reader should refer to [25].

As shown even for the case of a high multiplier value where the algorithm
finds very few clusters, the performance remains at high levels. For comparison
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purposes, we also report the performance of well known k-means algorithm. For
the results to be comparable, the number of clusters for the k-means algorithm
is set to the values found by the mICDC algorithm. For the computation of
k-means, we employ the Matlab function “kmeans”.

To better understand the clustering results, firstly we employ the confu-
sion matrices for the 4 cluster case (Table 2). Class 1 refers to the malignant
melanoma class and class 2 to the rest of the dataset.

Table 2. Confusion Matrices of the mICDC and k-means algorithms for 4 clusters

mICDC k-means

Class 1 Class 2 Class 1 Class 2

cluster1 0 3558 cluster1 6 2436
cluster2 62 0 cluster2 62 0
cluster3 4 0 cluster3 1 884
cluster4 3 0 cluster4 0 238

As shown in this case, the mICDC algorithm does not split the much bigger
class 2; so the rest of the clusters are considered to belong to class 1 (melanoma
samples). This is a very important result, since one can easily conclude that the
clusters with the much fewer samples constitute the malignant melanoma class.
As shown in Table 3, the malignant melanoma class can also be found even when
the algorithms retrieves more clusters.

Table 3. Confusion Matrices of the mICDC algorithm for 7 clusters

mICDC

Class 1 Class 2 Class 1 Class 2

cluster1 5 0 cluster5 5 0
cluster2 46 0 cluster6 0 3558
cluster3 6 0 cluster7 3 0
cluster4 4 0

In our next experiment, we will perform clustering on the dataset containing
only the displaying nevus and the malignant melanoma classes. The lack of
samples of the non-dysplastic class makes the projection pursuit problem a bit
more difficult, due loss of information. The results are presented in Table 4. In
Table 5, we exhibit a high performance case of the mICDC algorithm. In this case
the two classes have been perfectly separated and the majority of the displaying
nevus samples are at the same cluster. However, there also exists a small cluster
that does not belong to the malignant melanoma class.

7 Conclusions

In this paper, a clustering technique for the recognition of pigmented skin le-
sions in dermatological images is proposed. The images are preprocessed and
feature extraction is performed utilizing digital image processing methods, i.e.
segmentation, border detection, color and texture processing. The proposed clus-
tering methodology combines an already successful clustering technique from the
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Table 4. Results with respect to the mean clustering purity and V-measure (with
the observed standard deviation in parenthesis) for different multiplier values for the
dataset containing only nevus and the malignant melanoma classes.

mICDC

Multi. Purity V-measure Clusters

2 0.9809 (0.02) 0.3710 (0.23) 7.30 (2.98)
4 0.9520 (0.02) 0.2490 (0.40) 2.20 (0.63)

K-means

0.9908 (0.00) 0.1718 (0.01) 10 (0)
0.9452 (0.02) 0.1420 (0.02) 3 (0)

Table 5. Confusion Matrices of the mICDC algorithm for 7 clusters

mICDC

Class 1 Class 2 Class 1 Class 2

cluster1 55 0 cluster4 6 0
cluster2 4 0 cluster5 0 52
cluster3 0 920 cluster6 4 0

field of projection based clustering with a projection pursuit method. The new
framework utilizes the ICA model to find optimal projections, and then it incor-
porates information from the density of the projected data to effectively retrieve
the malignant melanoma class. Experimental results show great performance on
detecting the skin cancer.
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