Enhanced Object Recognition in Cortex-Like Machine Vision

Abstract : This paper reports an extension of the previous MIT and Caltech’s cortex-like machine vision models of Graph-Based Visual Saliency (GBVS) and Feature Hierarchy Library (FHLIB), to remedy some of the undesirable drawbacks in these early models which improve object recognition efficiency. Enhancements in three areas, a) extraction of features from the most salient region of interest (ROI) and their rearrangement in a ranked manner, rather than random extraction over the whole image as in the previous models, b) exploitation of larger patches in the C1 and S2 layers to improve spatial resolutions, c) a more versatile template matching mechanism without the need of ‘pre-storing’ physical locations of features as in previous models, have been the main contributions of the present work. The improved model is validated using 3 different types of datasets which shows an average of ~7% better recognition accuracy over the original FHLIB model.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.17-26, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_3〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01571495
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 août 2017 - 16:22:35
Dernière modification le : vendredi 1 décembre 2017 - 01:16:25

Fichier

978-3-642-23960-1_3_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Aristeidis Tsitiridis, Peter Yuen, Izzati Ibrahim, Umar Soori, Tong Chen, et al.. Enhanced Object Recognition in Cortex-Like Machine Vision. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 12th Engineering Applications of Neural Networks (EANN 2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-364 (Part II), pp.17-26, 2011, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-23960-1_3〉. 〈hal-01571495〉

Partager

Métriques

Consultations de la notice

61

Téléchargements de fichiers

11