M. A. Head-gordon, G. N. Clark, M. E. Johnson, and T. Head-gordon, Current Status of the AMOEBA Polarizable Force Field, J

C. Phys, G. Mancini, G. Brancato, V. Barone, R. A. Bryce et al., Combining the Fluctuating Charge Method, Non-periodic Boundary Conditions and Metadynamics: Aqua Ions as Case Studies A solvation model using a hybrid quantum mechanical/molecular mechanical potential with fluctuating solvent charges Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation Linear response theory and electronic transition energies for a fully polarizable QM/Classical Hamiltonian, J. Chem. Theory Comput. 2014 Chem. Phys. Lett. J. Chem. Theory Comput J. Chem. Theory Comput N, vol.114, issue.87, pp.1150-1163, 1997.

A. First, S. Derivatives, F. Polarizable, Q. Classical-hamiltonian-lipparini, F. Cappelli et al., A gauge invariant multiscale approach to magnetic spectroscopies in condensed phase: General three-layer model, computational implementation and pilot applications A simple polarizable model of water based on classical Drude oscillators Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model Excited States of the Bacteriochlorophyll b Dimer of Rhodopseudomonas viridis: A QM/ MM Study of the Photosynthetic Reaction Center That Includes MM Polarization A discrete solvent reaction field model for calculating molecular linear response properties in solution Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde, 13) Nielsen, pp.234108-6374, 1995.

G. Reynolds, C. A. Curutchet, C. Mun?-oz-losa, A. Monti, S. Kongsted et al., Toward a Consistent Treatment of Polarization in Model QM/MM Calculations Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model Analytic energy gradient in combined timedependent density functional theory and polarizable force field calculation, J. Phys. Chem. A J. Chem. Theory Comput. J. Chem. Phys, vol.112, issue.133, pp.12151-12156, 2008.

/. Mm, /. Pcm-method, Q. Zeng, W. Liang, and B. Stamm, Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation, J. Phys. Chem. B J. Chem. Phys, vol.115, issue.143, pp.3027-3037, 2011.

F. Lipparini, D. Loco, and F. Lipparini, Achieving Linear Scaling in Computational Cost for a Fully Polarizable MM/Continuum Embedding, J. Chem. Theory Comput. 2015, vol.11, issue.20
URL : https://hal.archives-ouvertes.fr/hal-01223159

J. Piquemal, B. A. Mennucci, F. Qm-lipparini, G. Scalmani, B. Mennucci et al., MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations A variational formulation of the polarizable continuum model, J. Chem. Theory Comput J. Chem. Phys, vol.12, issue.133, pp.3654-3661, 2010.

B. Mennucci, M. Schnieders, P. Ren, Y. Maday, and J. P. Piquemal, Polarizable molecular dynamics in a polarizable continuum solvent, J
URL : https://hal.archives-ouvertes.fr/hal-01114784

J. Piquemal, G. Cisneros, and . Lichem, A QM/MM program for simulations with multipolar and polarizable force fields, J. Comput
URL : https://hal.archives-ouvertes.fr/hal-01287204

M. Head-gordon, C. Skylaris, Y. Mao, Y. Shao, J. Dziedzic et al., A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field Performance of the AMOEBA Water Model in the Vicinity of QM Solutes: A Diagnosis Using Energy Decomposition Analysis, 26) Ponder, J. W. TINKER, Software Tools for Molecular Design, p.124106, 19631979.

A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski et al., Gaussian Development Version, Revision H.36 Ro? thlisberger, U.; Rovira, C. Hydroxide and Proton Migration in Aquaporins The Molecular Mechanism of the Catalase Reaction Hsc70 ATPase: An Insight into Water Dissociation and Joint Catalytic Role of K+ and Mg2+ Metal Cations in the Hydrolysis Reaction, 11751?11761. (31) John von Neumann Institute for Computing: Ju? lich33) Car, R.; Parrinello, M. Unified Approach for Molecular Dynamics and Density-Functional Theory, pp.6217-6263, 1985.

J. D. Joannopoulos, . Rev, . Mod, J. Phys-millam, V. Bakken et al., 1045?1097. (35) Tangney, P. On the theory underlying the Car-Parrinello method and the role of the fictitious mass parameter, J. Chem. Phys. J. Chem. Phys. Chem. Phys. Lett. J Phys. Chem. Chem. Phys, vol.64, issue.7, pp.44111-44147, 1992.

X. Xxx?xxx-h-niklasson, A. M. Tymczak, C. J. Challacombe, and M. , Time-Reversible Born-Oppenheimer Molecular Dynamics, Journal of Chemical Theory and Computation Article DOI: 10.1021, 2006.
DOI : 10.1063/1.469006

M. Challacombe, C. J. Tymczak, E. Holmstro?-m, G. Zheng, V. Weber et al., Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation, J. Chem. Phys. J. D, vol.130, pp.214109-214150, 2009.

C. Phys, F. Lipparini, L. Lagarde?relagarde?re, B. Stamm, E. Cance?scance?s et al., Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations, J, vol.114, pp.2549-2564, 2010.

M. Schnieders, P. Ren, Y. Maday, J. Piquemal, V. Vitale et al., Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald 2589?2599. (44) Pulay, P. Convergence acceleration of iterative sequences. the case of scf iteration Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory, J. Chem. Theory Comput Chem. Phys. Lett. J. Chem. Phys, vol.73, issue.14646, pp.393-398, 1980.
URL : https://hal.archives-ouvertes.fr/hal-01223161

C. Gresh, N. Dognon, J. Piquemal, J. Niklasson, A. M. Steneteg et al., Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies Extended Lagrangian free energy molecular dynamics Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method, Theor. Chem. Acc. J. Chem. Phys. Niklasson, A. M. N J. Chem, vol.2012, issue.13548, pp.1198-1245, 2011.

P. Albaugh, A. Demerdash, O. Head-gordon, T. Narth, C. Lagarde?-re et al., An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations Reliable molecular simulations of solute-solvent systems with a minimum number of solvent shells A mean field approach for molecular simulations of fluid systems Domain Decomposition for Implicit Solvation Models, J. Chem. Phys. J. Comput. Chem. Levitt, A.; Stamm, B.; Maday, Y.; Ren, P.; Ponder, J. W.; Lagarde?reLagarde?re, L.; Piquemal, J.-P. J. Chem. Theory Comput. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. E, vol.135, issue.13955, pp.44122-494, 2005.

A. Klamt and G. Schuurmann, Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Theory Comput. J. Chem. Soc., Perkin Trans, vol.2013, issue.9, pp.3637-3648, 1993.