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Abstract: A significant class of plant pathogens is constituted by biotrophic fungi. They set up
long-term feeding relationships with their hosts. This kind of parasitism decreases competitive
abilities of plants in natural environments and reduces yields in agricultural systems. Therefore,
it is relevant to develop and validate mathematical models which can help to better understand
how related disease associated traits evolve. In this paper, one-season dynamics of a within-
host cohort of spore-producing biotrophic fungi is considered. Their within-host multiplication
and outer transmission are implemented by the mycelial growth and free-living (spore) forms,
respectively. We state and investigate a specific dynamic optimization problem in order to
determine how the fungi allocate available host resources between mycelial growth and spore
production. The pathogen fitness criterion is introduced as maximization of the reproductive
output. The constructed optimal feedback strategy can serve as a benchmark to compare actual
infection mechanisms. There is a singular control subregime which plays an important role from
the biological point of view. It keeps the average mycelium size equal to a particular steady
value and represents an intermediate configuration of the resource allocation. We also analyze

the asymptotic behavior of this steady state when the lesion density is large.

Keywords: biotrophic pathogen, within-host multiplication, spore production, resource
allocation, optimal control, singular control, switching surfaces.

1. INTRODUCTION

A significant class of plant pathogens is constituted by
biotrophic fungi (Deacon (1997)) such as rust fungi (Basid-
iomycota) and powdery mildew fungi (Ascomycota). They
invade only a few cells of their hosts in order to produce
nutrient-absorbing structures known as haustoria, and the
hosts are disadvantaged but not killed. This kind of para-
sitism decreases competitive abilities of plants in natural
environments and reduces yields in agricultural systems.
One can mention leaf rust of willow, poplar (Melamp-
sora species), and wheat (Puccinia species), as well as
powdery mildew of hawthorn (Podosphaera oxyacanthae),
gooseberry (Sphaerotheca mors-uvae), cereals and grasses
(Erysiphe graminis), etc. Thus, it is relevant to develop
and validate theories which can help to better understand
how related disease associated traits evolve, and dynamic
mathematical modeling can be useful for that, as indi-
cated, for instance, by Sasaki and Iwasa (1991); Day (2001,
2003); Gilchrist et al. (2006); Akhmetzhanov et al. (2011,
2012).
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In this paper, one-season dynamics of a within-host cohort
of spore-producing biotrophic fungi is considered. Their
within-host multiplication and outer transmission are im-
plemented by inner growth and free-living (spore) forms,
respectively. For many plant pathogenic fungi exploiting
leaf tissues as hosts, within-host multiplication relies on
mycelial growth within foliar lesions, while transmission is
achieved by producing and releasing asexual spores. We
assume that there is no conversion between these two
forms. Then there arises the problem of allocating the
available nutrient flux between the two different activities
in order to maximize the pathogen fitness.

The aim of the current work is to construct a dynamic
mathematical model of the described process together
with a suitable fitness criterion so that the correspond-
ing optimal resource allocation strategy could serve as a
benchmark to compare actual infection mechanisms.

Note that, for another wide class of fungi such as sapro-
phytes (obtaining nutrients from dead organic matter),
optimal resource allocation strategies turn out to be purely
bang-bang as shown by Gilchrist et al. (2006). However,
long-term feeding sink activity of biotrophic fungi can
lead to coexistence of both mycelial growth and spore
production (Deacon (1997); Newton et al. (1999); Robert
et al. (2004); Bancal et al. (2012)), which corresponds to
a regime with an intermediate resource allocation. Such



a regime indeed appears in the solution to our dynamic
optimization problem.

The paper is organized as follows. First, we provide the
statement of our problem. Then it is investigated by us-
ing necessary optimality conditions. The obtained results
together with additional arguments allow us to construct
the sought-for optimal feedback control. Next, we analyze
the asymptotic behavior of the optimal steady-state infec-
tion size for large lesion densities. Finally, the results of
numerical simulations are presented and discussed.

2. PROBLEM STATEMENT

Consider a cohort of biotrophic fungi developing during
one season within one host plant. Denote the lesion density,
i.e., the number of mycelia in the cohort per unit area
of the host, by n, and assume that it is constant during
the season. Let M be the average size of a mycelium in
the cohort, and let S be the average quantity of spores
produced by such a mycelium. Time variable ¢t plays the
role of the infection age within the season. The mycelia get
nutrients from the host. The related flux is determined
by a function f(M) and allocated between two differ-
ent pathogen activities such as within-host multiplication
(mycelial growth) and production of asexual spores. De-
note a time-dependent resource allocation function taking
values from the interval [0,1] by u. When u(t) = 0, the
whole flux is spent on within-host multiplication. When
u(t) = 1, it goes only to spore production. For 0 < u(t) <
1, an intermediate allocation takes place. Let the rate of
mycelial decay be specified by a function g(M). Spores are
produced with a constant yield § € (0,1] in comparison
with mycelial growth.

The observed time interval [0,7] is the time-course of
the infection within the season. Time horizon T' > 0 is
fixed. It can be finite or infinite. For T = 400, [0,7]
is understood as [0,+00). The infinite-horizon case is a
reasonable abstraction when the pathogen dynamics is
rather fast with respect to season duration.

Thus, we come to the model

d]\jt(t) = (1 —ult))- FM@) — g(M(1)),
%ﬂ = §-u(t) - F(M(2)), (1)
M(0) = My, S(0) =0,

0<u(t)<1, telo,T].

Let us treat any Lebesgue measurable function « : [0,T] —
[0,1] as an admissible (open-loop) control.

Assuming epidemiological equilibrium and the absence
of within-host competition between pathogen genotypes
(i.e., multiple infections are not allowed), we set the
pathogen fitness criterion as maximization of the repro-
ductive output fOT(dS(t)/dt) ~e Mt dt, where dS(t)/dt is
the spore production rate at infection age t, and e #* is
the term describing exponential extinction of the infection
with a constant rate u > 0 (Sasaki and Iwasa (1991); Day
(2001, 2003)). Since ¢ is a positive constant, the criterion
can be written as

T

/ w(t) - FM(E) - e dt —> max. )
0
This maximization is over all admissible controls.

One can easily see that M is in fact a single state variable
in our problem (we do not need to treat S explicitly).

In order to better represent biological aspects of the model,
let us write the nutrient flux in the form

f(M) = f1(M) - fa(nM), (3)
where f1(M) describes the resource flow that can be
obtained by a single mycelium, while fy(nM) determines
negative influence of competition between mycelia for host
resources. For example, one can choose

AGD = ST ROM) = Tp
where «, 3,7, k are positive constants. If the lesion density
is zero, then fo(nM) =1, i.e., there is no competition.

g(M) = M, (4)

Note that, when considering lesion densities, we implicitly
suppose that the total observed host area is sufficiently
large. However, for biological experiments with a fixed
small area, it may be reasonable to introduce parameter n
not as the real-valued density but as the total number of
mycelia. In such a case, the competition term can be taken
as fo((n—1)M) = 1/(1+8(n—1)M) (it equals 1 when there
is a single lesion). From the mathematical point of view,
this leads merely to some change of constant parameters,
and the model essentially remains the same.

Now let us introduce the following technical assumption
(further assumptions will be formulated later).

Assumption 1. Functions f1, f2,g9 are twice continu-
ously differentiable on [0,+00) and positive on (0,+00),
derivative g' is nonnegative on [0,+00), f1(0) = g(0) =0,
and, moreover, f(Myp)—g(Myp) < 0 for some sufficiently
large Myp > 0.

It is clear that functions (4) satisfy this assumption.

From Assumption 1, we obtain that, for any initial state
My € (0, M) and for any admissible control w : [0,7] —
[0,1], there exists a unique trajectory M : [0,7] — R
of (1), and M(t) € (0, M,p) for all t € [0,T]. Therefore,
0 < M < M, is a bounded strongly invariant domain
in the state space according to the definition of (Clarke
et al., 1998, Chapter 4, §3). Similarly to (Yong and Zhou,
1999, Chapter 2, §5.1), one can verify that, for every fixed
My € (0, M), there exists an optimal open-loop control
for problem (1),(2).

Let us consider only admissible state trajectories lying in
the strongly invariant domain 0 < M < M.

The key objective of this paper is to find optimal feedback
control laws for problem (1),(2) in both of the cases
T < +o0 and T = +oc.

3. NECESSARY OPTIMALITY CONDITIONS IN THE
FINITE-HORIZON CASE

Consider the finite-horizon case T < +o0.

Necessary optimality conditions for open-loop controls
date back to Pontryagin et al. (1964) and are known as



Pontryagin’s maximum principle (PMP). For our prob-
lem (1),(2), PMP leads to the Hamiltonian

H(t, Myu,9) = (f(M) = g(M)) + uf(M) (e =¢), (5)
adjoint system

WO — (prw) - g 010) - te) -
— () F M) (e ), O
w(T) =0,

and ensuing maximum condition

0, P(t) > e M
ay = {3 @

which holds necessarily for an optimal open-loop control.

Since ¥(T) = 0 < e #T then an extremal control equals 1
near the final instant ¢t = T'.

If 9(t) = e * on some time subinterval, then a singu-
lar regime takes place. General results concerning such
regimes were introduced by Gabasov and Kirillova (1982).
For describing singular regimes in our problem, let us
use equations (1) and (6) so as to write the following
expressions for the derivatives of the switching function

et —ah(t):

D (emt— ) = —pet 4 (F1(M) — g (M) +

dt
+ uf (M) (e =),
i —pt — e Mt (g! —q _
@ )| L, T e =g 0n —p), ©
d d , _
dt<dt(e #t,w) eutwo> =

= —pe M (f/(M) = g' (M) — p) +
+ e (M) = g" (M) (1 = u) f(M) — g(M)).

For verifying Kelley condition (Gabasov and Kirillova
(1982)), let us differentiate the last expression with respect

tou
8 (d{ d
A L _
du (dt (dt (e ¥) e_,n_wz()))

= —e Mf(M) (f"(M) - g"(M))
(this partial derivative should be nonnegative along sin-
gular subarcs of optimal processes). Based on the ob-
tained representations, we impose the next assumption
that guarantees existence of a singular arc as a unique
steady state and also fulfillment of Kelley condition in the
strict inequality form.

Assumption 2. There exists a unique solution M* &
(0, Myp) to the equation

frrr) = g (M) = nfy (nM") fr (M") +
+fo(WM7) f{ (M) — g (M™) = p,

and the following inequality holds:
UMY = g" (M) = nPfy (nM*) fi (M*) +
+2nfy (nM7) f1 (M7) + f2 (nM") f{ (M”) —
—g"(M*) < 0.

(9)

(10)

Thus, direct analysis of the PMP boundary value problem
(1),(6),(7) leads to the following theorem.

Theorem 1. Suppose that T < 400 and Assumptions 1,2
hold. Singular arcs of optimal state trajectories for prob-

lem (1),(2) stay at M = M*, correspond to the constant

control ()
* g
S T
and satisfy strong Kelley condition. Moreover,
FM) =g/ (M) < p VM > M,
f(M) =g (M) > p VM e (0,M"),
F(M) > g(M) YM € (0, M"].

€ (0,1), (11)

(12)

Hence, the singular control indeed keeps the average
mycelium size equal to the steady value M* and represents
an intermediate configuration of the resource allocation.

Also note that

MV ) <0 i M >0,
dt |,_, 3
dM (13)
u=0

In order to analyze time subintervals on which the switch-
ing function e #* — 1)(t) keeps its sign, let us use repre-
sentations (8) together with relations (9)—(13). Then the
next properties can be verified.

Proposition 1. Suppose that T' < +oo, Assumptions 1,2
hold, (u(-), M(-),%(-)) is an admissible process, t € (0,T]
s a fized instant, M (ﬂ =M, and ¢ (f) = 1. Then the
following properties hold:

1) if M > M*, & < e, and process (u(-), M(-),%("))
fulfills PMP for all t € [0,%], then
M(t) > M* Vte[0,1),
P(t) <e ™ and u(t)=1 Vte[0,t];
2) if M < M*, ¢ > e " and process (u(-), M(-),9(-))
fulfills PMP for all t € [O,ﬂ, then
M(t) < M* Vte[0,1),
P(t) > e ™ and u(t)=0 Vte[0,];
3) if M= M*, ¢ =e " and u(t) =1 for allt € [O,i),
then
M(t) > M* and ¢(t) <e ™ Vte0,1),
which implies fulfillment of PMP for all t € [0, ﬂ;
4) if M= M*, ¢ =e " and u(t) =0 for all t € [O,t),
then
M(t) < M* and 9(t) >e " Vte [0,1),
which implies fulfillment of PMP for all t € [0, ﬂ

Now, based on Theorem 1 and Proposition 1, let us sum-
marize possible qualitative portraits of optimal processes.

Theorem 2. Under Assumptions 1,2, the following state-
ments hold for optimal processes of problem (1),(2) in case
T < +o0:

1) if M(T) > M*, then u(t) = 1 for all t € [0,T] (due
to item 1 in Proposition 1);

2) if M(T) < M*, then there is at most one bang-bang
switching, and it may happen only when M < M*
(due to items 1,2 in Proposition 1);

3) if M(T) < M*, then there is at most one singular
are, and it stays at M = M* (due to Theorem 1 and
items 3,4 in Proposition 1);



4) if an optimal control contains a bang-bang switching
(note that switchings to or from the singular control
are not treated as bang-bang), then it does not contain
a singular arc, and vice versa (due to items 2—4 in
Proposition 1).

In the next section, we will use the derived results in order
to determine the optimal feedback control.

4. OPTIMAL FEEDBACK CONTROL IN THE
FINITE-HORIZON CASE

From Theorem 2, we conclude that, for constructing the
optimal feedback control, it is necessary to characterize
the bang-bang switching set I'y, in the space (¢, M) of the
time and state variables. For this purpose, it is convenient
to introduce the reverse time variable 7 =T — t.

Recall that boundary condition in (6) and maximum
condition (7) imply w = 1 and dM/dr = g(M) for
sufficiently small 7. For any 7 > 0 and M € (0, Myp), let
n(-; 7, M) be the solution to dM/dr = g(M) considered for
7 < 7 and reaching M = M at 7 = 7. Due to autonomity
of this equation, we have n(7;7, M) = n(— (f — ) ;0, M)
for all 7 < 7.

Suppose that (T — ?,M) el and M |,—7 = M. From

adjoint system (6) rewritten in reverse time on the interval
0< 77, we get

T T

Glr=r = /exp —/g’ (n(=F=¢);0,M))dc
0 s
- f (17 (— (F—r);0, M)) e HT=7) g,

It remains to recall the switching condition ¢ |,—7z =
e~*MT=7) in order to obtain the following result.
Proposition 2. Under Assumptions 1,2, the bang-bang
switching surface for problem (1),(2) in case T < 400 can
be represented as

'y, = {(t, M) € [0,T] x (0, M*] :
where

)\b<T_t’M):0}a

T s

)‘b(TvM) = 7/ exp 7/9’(7](7£§07M))d£7:u’s
0 0
“f'(n(=s0,M))ds + 1 VYT >=0 VM € (0, Myp).

Also note that there exists a unique 7 > 0 for which
Ap (7%, M*) = 0.

One can verify that optimal integral trajectories cross
Iy \{(T — 7*, M*)} transversally under the next condition
(it is in fact related to the subarcs for u = 0, because a
similar condition on the subarcs for u = 1 can be directly
obtained by using the previous assumptions).

Assumption 3. The following property holds:

(T —t, M) (T —t, M)
T 4 (g(M) — f(M)) - T <0
YV (t, M) € Tp.

In the particular case (4), we have

Ap(T, M) = —/e_('y’L“)sf’ (Me™°) ds + 1,
0

which implies the inequality
a)\b (7—7 M) 8/\b(’ra M)

(a(M) = f(M)) =

- 2 (g(M) — F(M)
= —e OTWTE (MeT) — (g(M) — f(M)) -
./e—(2v+u)8f// (Me—’YS) ds < 0
0

for (M, T —71) € T}, i.e., Assumption 3 indeed holds.

Now, with the help of Theorems 1,2 and Propositions 1,2,
we can describe the optimal feedback control strategy (see
also Fig. 2 in section 7).

Theorem 3. Under Assumptions 1-3, the optimal feed-
back control law for problem (1),(2) in case T < +oo has
the form

1, 0<M<M* MNT-t,M) >0,
0, O0<M<M*, \NT-t,M) <0,
Uopt (B, M) = qu*, M=M" 0<t<T—7",
1, M=M"T-7m<t<T,
1, M>M",
YVt e [0,T] VM € (0, Myp).

5. OPTIMAL FEEDBACK CONTROL IN THE
INFINITE-HORIZON CASE

Note that the switching surface I'y, and reverse time
instant 7* are independent from 7. Since we consider only
state trajectories lying in the bounded strongly invariant
domain 0 < M < M,p, then the contribution to cost (2)
on the subinterval T'— 7" < t < T uniformly tends to
zero as T — +o0o. Therefore, the optimal feedback control
strategy in case T' = 400 can be described as follows (see
also Fig. 2 in section 7).

Theorem 4. Under Assumptions 1-3, the optimal feed-
back control law for problem (1),(2) in case T = 400 has
the form
0, 0<M< M,
Uopt (B, M) = uopt(M) = qu*, M=M",
1, M>M",
Vi >0 VM e (0, My).

Furthermore, Assumptions 1-3 and, consequently, Theo-
rems 1—4 (together with Propositions 1,2) hold in case (4)
if &« > (y+ )k (this inequality appears from the condition
1/(0) — ¢’(0) > p which is required for fulfilling the first
part of Assumption 2).

6. ASYMPTOTICS OF THE OPTIMAL
STEADY-STATE INFECTION SIZE FOR LARGE
LESION DENSITIES

Consider the optimal steady-state infection size
M(n)=n-M*(n) (14)
(i. e., the total mycelial size on a singular arc) as a function
of the lesion density n > 0. Transform equation (9) into
, M
M) = ne m) - f () 4

+ f2(Mn)) - ) (@) B (g, (@)ﬂb) . (15)



Note that, if nutrient flux (3) does not contain the compe-
tition term fo(nM) or if fo(z) = const, then M* does not
depend on n and, therefore, the infection size M(n) =
nM* — 400 as n — oo. However, this is impossible
from the biological point of view, because host resources
are limited and, regardless of the lesion density, the total
infection cannot infinitely grow. Thus, the competition
term should lead to saturation of M(n) for large n. Let us
formulate sufficient conditions for that.

Assumption 4. For every n > 0, M*(n) is a unique
solution to equation (9) on the whole interval (0,+00)
(not only on (0, Myp(n))), and inequality (10) also holds.
Moreover, f is bounded on [0,400), f} is nonpositive on
0, +00), and _lim_f(r) = 0.

Now the sought-for property can be verified by contradic-
tion (if there is a sequence {n;}$2; of positive numbers
such that n; — +o0o0 and M(n;) — +oo as ¢ — oo, then,
due to Assumption 4, x(M(n;),n;) has a negative upper
limit for ¢ — oo and, therefore, cannot be identical to
7€ero).

Proposition 3. Let Assumptions 1,4 hold for every n >
0. Then function (14) is bounded for n = 0.

One more natural property in addition to boundedness
of the infection size is its increase with increase of n.
The next result can be proved by applying the rule of
differentiating implicit functions to an equation which is
equivalent to (15).

Proposition 4. Suppose that Assumptions 1,4 hold for
every n = 0, and, moreover, there exists a positive smooth
function k = k(xz,n) defined for positive arguments and
such that the partial derivatives 0X(x,n)/0x, Ox(z,n)/on
of the product X(x,n) = x(xz,n) - k(xz,n) are nonzero
and have opposite signs for all © > 0, n > 0. Then
function (14) is strictly increasing for n > 0.

One can directly verify that, for particular functions (4),
all the conditions of Propositions 3,4 hold if « > (v + p)k.

7. NUMERICAL SIMULATIONS

First, note that it is convenient to measure mycelium
sizes in terms of equivalent amounts of infecting spores.
In particular, if a mycelium appears from one spore at the
beginning of the infection period, then the initial mycelium
size can be represented as one equivalent of an infecting
spore or, roughly speaking, as one spore. Furthermore, let
us measure time (infection age) in days and lesion densities
in spores/cm?.

For numerical simulations, consider functions (4) with the
following parameter values: k = (1/6)-10* spores, o = 0.2-
10* spores/day, 8 = 107> cm?/spores?, v = 0.06 1/day,
w=0.03 1/day.

These values are contained in the physically realistic
ranges that can be seen, for instance, in the works of
Newton et al. (1999); Pei et al. (2003); Robert et al.
(2004); Gilchrist et al. (2006). In fact, estimating actual
parameter values via experiments with real plant-pathogen
interactions (for example, leaf rust of poplar) is a possi-
ble subject of future research. Nevertheless, taking exact
parameter values for numerical simulations does not seem
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Fig. 1. Functions u*(n), M*(n), and M(n) =n- M*(n).

to be crucial, since the key objective of our model is to
obtain general qualitative results allowing clear biological
interpretation.

Fig. 1 indicates how the singular control u*, steady state
M*, and optimal steady-state infection size M(n) = n -
M*(n) depend on the lesion density n. As n increases,
u*(n) stays approximately constant, while M™*(n) de-
creases. One can also see growth and saturation of M(n)
in compliance with Propositions 3,4.

Now fix the lesion density n = 10 spores/cm?. The global
phase portraits of the optimal feedback control strategies
together with the corresponding integral trajectories in
cases T = 20 and T = 400 are given in Fig. 2. In the
infinite-horizon case, the line M = M™ can be charac-
terized as a turnpike regime with an intermediate resource
allocation (Zelikin and Borisov (2005)). This line separates
the latency (u = 0) and pure sporulation (v = 1) regimes
so that optimal trajectories are attracted to it from both
of the opposite sides. Such an attracting manifold is called
universal (Melikyan (1998)). A similar description can be
applied to the finite-horizon case with the difference that
the pure sporulation regime occupies not only the half-
plane M > M* but also some domain lying in M < M*
and contiguous to the final instant line ¢ = T. The lat-
ter property represents the necessity to stop supporting
mycelial growth and, consequently, to invest all available
nutrient resources in spore production closer to the end
of the observed time interval. Thereby, the bang-bang
switching surface I'y, appears, which is specific for finite-
horizon optimal resource allocation problems (Yegorov
et al. (2015)).
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Fig. 2. Optimal feedback control strategies for n = 10 in
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8. CONCLUSION

In this paper, we developed a nonlinear model for
one-season dynamics of a within-host cohort of spore-
producing biotrophic fungi and solved a related optimal
resource allocation problem. In addition to the finite-
horizon case, such a reasonable abstraction as the infinite-
horizon case was also treated.

The constructed optimal feedback strategy can serve as
a benchmark to compare actual mechanisms of infections
caused by biotrophic plant pathogens. There is a singular
control subregime that leads to a steady-state arc and an
intermediate resource allocation. This is specific namely
for biotrophic fungi (as was noted in the introduction, an-
other fungal class such as saprophytes can be characterized
by purely bang-bang resource allocation strategies).

Furthermore, we analyzed asymptotics of the optimal
steady-state infection size for large lesion densities. The
obtained saturation property was an important argument
in favor of our problem statement including competition
between pathogens for limited host resources.

Biological implications of this modeling work are manifold.
Spore production and mycelium sizes can be practically
measured (for instance, through real-time PCR analysis),
and our model predictions can thus be challenged with
biological experiments. Moreover, the latent period (i.e.,
the time between inoculation at ¢ = 0 and the onset
of sporulation with v = wu*) is a key trait for most
pathogens and accounts for both epidemiological dynamics
and parasite virulence. A better understanding of how
resource allocation strategies rule the evolution of this trait
is a strong prerequisite for the development of sustainable
crop protection techniques.

Another promising direction of future theoretical re-
search is application of the differential game framework

to models describing resident-mutant type interactions
(Akhmetzhanov et al. (2012)) between different cohorts
of biotrophic fungi within one host.
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