Enhancing Sustainability of Complex Epidemiological Models through a Generic Multilevel Agent-based Approach

Abstract : The development of computational sciences has fostered major advances in life sciences, but also led to reproducibility and reliability issues, which become a crucial stake when simulations are aimed at assessing control measures, as in epidemiology. A broad use of software development methods is a useful remediation to reduce those problems, but preventive approaches, targeting not only implementation but also model design, are essential to sustainable enhancements. Among them, AI techniques, based on the separation between declarative and procedural concerns, and on knowledge engineering, offer promising solutions. Especially, multilevel multi-agent systems, deeply rooted in that culture, provide a generic way to integrate several epidemiological modeling paradigms within a homogeneous interface. We explain in this paper how this approach is used for building more generic, reliable and sustainable simulations, illustrated by real-case applications in cattle epidemiology.
Type de document :
Communication dans un congrès
Carles Sierra. International Joint Conference on Artificial Intelligence (IJCAI'2017), Aug 2017, Melbourne, Australia. pp.374-380, 2017, Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'2017). 〈https://ijcai-17.org〉. 〈10.24963/ijcai.2017/53〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01572248
Contributeur : Cristal Equipe Smac <>
Soumis le : samedi 5 août 2017 - 17:52:36
Dernière modification le : mardi 24 avril 2018 - 13:53:47

Fichier

ijcai2017-emulsion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sébastien Picault, Yu-Lin Huang, Vianney Sicard, Pauline Ezanno. Enhancing Sustainability of Complex Epidemiological Models through a Generic Multilevel Agent-based Approach. Carles Sierra. International Joint Conference on Artificial Intelligence (IJCAI'2017), Aug 2017, Melbourne, Australia. pp.374-380, 2017, Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'2017). 〈https://ijcai-17.org〉. 〈10.24963/ijcai.2017/53〉. 〈hal-01572248〉

Partager

Métriques

Consultations de la notice

340

Téléchargements de fichiers

119