Skip to Main content Skip to Navigation
Conference papers

Human-in-the-loop optimisation: mixed initiative grasping for optimally facilitating post-grasp manipulative actions

Amir Ghalamzan 1 Firas Abi-Farraj 2 Paolo Robuffo Giordano 2 Rustam Stolkin 1
2 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This paper addresses the problem of mixed initiative , shared control for master-slave grasping and manipulation. We propose a novel system, in which an autonomous agent assists a human in teleoperating a remote slave arm/gripper, using a haptic master device. Our system is designed to exploit the human operator's expertise in selecting stable grasps (still an open research topic in autonomous robotics). Meanwhile, a-priori knowledge of: i) the slave robot kinematics, and ii) the desired post-grasp manipulative trajectory, are fed to an autonomous agent which transmits force cues to the human, to encourage maximally manipulable grasp pose selections. Specifically , the autonomous agent provides force cues to the human, during the reach-to-grasp phase, which encourage the human to select grasp poses which maximise manipulation capability during the post-grasp object manipulation phase. We introduce a task-relevant velocity manipulability cost function (TOV), which is used to identify the maximum kinematic capability of a manipulator during post-grasp motions, and feed this back as force cues to the human during the pre-grasp phase. We show that grasps which minimise TOV result in significantly reduced control effort of the manipulator, compared to other feasible grasps. We demonstrate the effectiveness of our approach by experiments with both real and simulated robots.
Document type :
Conference papers
Complete list of metadata

Cited literature [25 references]  Display  Hide  Download
Contributor : Eric Marchand <>
Submitted on : Monday, August 7, 2017 - 9:28:33 AM
Last modification on : Saturday, July 11, 2020 - 3:15:37 AM


Files produced by the author(s)


  • HAL Id : hal-01572347, version 1


Amir Ghalamzan, Firas Abi-Farraj, Paolo Robuffo Giordano, Rustam Stolkin. Human-in-the-loop optimisation: mixed initiative grasping for optimally facilitating post-grasp manipulative actions. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS'17, Sep 2017, Vancouver, Canada. pp.3386-3393. ⟨hal-01572347⟩



Record views


Files downloads