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Abstract

The goal of this paper is to propose a coupling between the execution of a Image-Based Visual Servoing (IBVS)
task and an active Structure from Motion (SfM) strategy. The core idea is to modify online the camera trajectory in
the null-space of the (main) servoing task for rendering the camera motion “more informative' w.r.t. the estimation of
the 3-D structure. Consequently, the SfM convergence rate and accuracy is maximized during the servoing transient.
The improved SfM performance also bene ts the servoing execution, since a higher accuracy in the 3-D parameters
involved in the interaction matrix improves the IBVS convergence by signi cantly mitigating the negative effects
(instability, loss of feature visibility) of a poor knowledge of the scene structure. Active maximization of the SfM
performance results, in general, in a deformed camera trajectory w.r.t. what would be obtained with a classical IBVS:
therefore, we also propose an adaptive strategy able to automatically activate/deactivate the SfM optimization as a
function of the current level of accuracy in the estimated 3-D structure. We nally report a thorough experimental
validation of the overall approach under different conditions and case studies. The reported experiments support well
the theoretical analysis and clearly show the bene ts of the proposed coupling between visual control and active
perception.

Keywords
Visual Servoing, Motion Control, Adaptive Control

1 Introduction et all [2013). Trajectories with low information content
L will also result, in practice, in inaccurate (or noisy) state
In many sensor-based robot applications, the state @fiination. This, in turn, can degrade the performance of
the robot w.rt. the environment can only be partially,, hianner/controller that needs to generate actions as a

retrieved from its onboard sensors. In these situations, Stgig tion of the reconstructed states, possibly even leading
estimation schemes can be exploited for recovering onlige ¢ res/instabilities| (De Luca et &l 2008; Malis et al.
the “missing information' then fed to any pIanner/motioriOlO)
controller in place of the actual unmeasurable states.When]_he dependence of the estimation performance on
considering non-trivial cases, however, state estimati?tqe robot ptra'ector and of the contrgl erformance
must often cope with the nonlinear sensor mappings ajectory, P .
from the observed environment to the sensor space r(]e the estimation accuracy, clearly creates a tight

. L F space. .colupling between perception and action: perception should
perspectlye pr_OJectlon performed by cameras is a cIaSS|%ae optimized for the sake of improving the action
example n this Sensg (Ma et/al. 2003). Because of theesxeecution performance, and the chosen actions should allow
nonlinearities, the estimation convergence and accuracy can
be strongly affected by the particular trajectory followed by
the robot/sensor which, loosely speaking, must guarantee a
suf cient level of excitationduring motion |(Cristofaro and ,, . _ _

University of Rennes 1, Irisa and Inria, Rennes, France

Martinelli2010; Achtelik et al. 2013). 2CNRS, Irisa and Inria, Rennes, France
In the context of Structure from Motion (SfM), for ®Inria and Irisa, Rennes, France
example, a poor choice of the camera trajectory € responding author:
make the 3-D scene structure non-observableatever paoi Robuffo Giordano, CNRS at Irisa and Inria Rennes Bretagne

the employed estimation stratedy (Martinelli 2D12; Spicauantique, Campus de Beaulieu, 35042 Rennes Cedex, France.
and Robuffo Giordarid 2013; Eudes et [al. 2013; Gral®nail: prg@irisa.fr
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maximization of the information gathered during motion fovelocity/acceleration, observed target velocities and so on)
facilitating the estimation task (Valente et|al. 2012). to estimate the geometry of a scene and/or the camera

In this respect, the goal of this paper is to proposJ@otion (see e.d. De Luca etlal. (2008); Martin€lli (2012);
an online coupling between action and perception in thEudes et al[ (2013); Grabe et al. (2013), Chwa &t al. (2016)).
context of robot visual control. We consider, in particularPome of these works also identied and discussed the
the class of Image-Based Visual Servoing (IBVS) schemé§gularities of the problem, but without proposing any
(Chaumette and Hutchinspn 2006) as a representative c@§tve control strategy to avoid them. There obviously exists
study. Indeed, besides being a widespread sensor-ha@a@st literature on the topic afajectory optimizatiorfor
control technique (see e.d., Tahri and Chaumétte (Zoogp,proving the identi cation/estimation of some unknown
Gans and Hutchinsor] (2007); Mahony and Stramigidnarameters/states (see e.g., Achtelik et/al. (2013); Wilson
(2012)), IBVS is also affected byl the aforementioned (€t al| (2014)} Hollinger and Sukhatirie (2014); Miller et al.
issues. On the one hand, whatever the chosen set of vis{#816)).In the context of SfM, the so-calléixt Best View
features (e.g., points, lines, planar patches), the associdfd§V) problem has also been addressed before, see Whaite
interaction matrixalways depends on some additional 3-(&nd Ferrie|(1997); Chen etfal. (2011) for a classical work
parameters not directly measurable from the visual inp@fd & recent survey on this topic. However, many of these
(e.g., the depth of a feature point). These parametéféategies are meant for afine use (<_91 whole trajectory
must, then, be approximated or estimated online, viaig planned, executed, and then possibly re-planned based
SfM algorithm, with a sufcient level of accuracy for ON the obtained results), and, in any case, do not take into
not degrading the servoing execution or even incurring gecount theonline realization of a visual taskoncurrently
instabilities or loss of feature visibility (Malis et al. 2010) 0 the optimization of the estimation. At the other end of
On the other hand, the SfM performance is directly affectdf® Spectrum, several works have already investigated how
by the particular trajectory followed by the camera durinfp Plug the online estimation of the 3-D structure into a
the servoing(Martinel[i 2012; Spica and Robuffo Giordan¥isual servoing loop, see, e.g., Chesi and Hashimoto (2004);
2013; Spica et al. 2014a): the IBVS controller should thenulita_et al. |(2007)[ De Luca et al. (2008); Malis et al.
be able to realize the main visual task whit the same (2009); Petiteville et gl (2010); Corke (2010); Mahonyland

|;]rajectory generated by the IBVS controller which, on the

In this paper these objectives are met by investigating t fher hand, has no guarantee of generating a suf cient level
online coupling between a recently developed framewor(l)<r excitatio,n W.LL the estimation task

for active SfM (Spica et al. 2014a) and the execution St
a standard IBVS task. For this purpose, we exploit and With respect to this previous literature, our work
extend the preliminary results obtained by Spica €t dirovides, instead, aonline solution to the problem of
(2014b): in particular, the main idea is to project angoncurrently optimizing the execution of a IBVS task
optimization of the camera motion (aimed at improving thévisual control) and the performance of the 3-D structure
SfM performance) within the null-space of the considere@stimation (active perception). We also wish to stress that
visual task in order to not affect the servoing executiofhe proposed machinery is not restricted to the sole class
For any reasonable IBVS application, however, a simp@ IBVS problems presented in this paper: indeed, one can
null-space projection of a camera trajectory optimizatiogasily generalize the reported ideas to other servoing tasks
turns out to be ineffective because of a structural lack ¢-9., exploiting different discrete/dense/geometric visual
redundancy. Therefore, in order to gain the needed freedd@gtures than those considered in this work), or apply them
we suitably extend the redundancy framework introducd@él Pose-Based Visual Servoing (PBVS) schemes.

by|Marey and Chaumeite (2010 to the case at hand, whichrpe rest of the paper is organized as follows:

requires an action at the camera acceleration level. %Ct-@ describes the theoretical setting of the paper
addition, an adaptive mechanism is also introduced with thaqy summarizes the active SfM framework presented
aim of activating/deactivating online the camera trajectoiy Spica and Robuffo Giordand (2013). Then, Sédt. 3
optimization as a function of the accuracy of the estimateghtails the machinery needed for coupling IBVS execution
3-D structure for minimizing any "distorting" effect on theang optimization of the 3-D structure estimation. The
camera motion. proposed machinery is, then, validated in Sg¢t. 4 via a
The proposed (adaptive) coupling between activeumber of experiments. Subsequently, §dct. 5 introduces an
perception and visual control constitutes in our opinioextension of the strategy detailed in S¢gt. 3 for allowing
an original contribution w.r.t. the existing literaturea smooth activation/deactivation of the camera trajectory
Other works have already studied how to fuse visuaptimization as a function of the current estimation
measurements and different metric cues (e.g. camerecuracy. This extension is experimentally validated in
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Sect[§. Finally, Secf]7 concludes the paper and proposeSpecial approximations, suchas= = const, where
some possible future directions. is the value of at the desired pose, can, at best,
only guarantee local stability in a neighborhoodsof(see
Chaumette and Hutchinsan (2006)) and, in any case, require
some prior knowledge on the scene (the value omust be

2.1 Image-Based Visual Servoing obtained independently from the execution of the servoing

Consider a moving camera that measures a set of vis K). Additiopall){, too fO‘%gh estimations of thg nal (or
featuress 2 R™ (e.g., thex andy coordinates of a point other approximation choices fdr) may result in a poor,

feature) to be regulated at a desired constant value or even unstable, closed-loop behavior for the servoing (see

As well-known {Chaumette and Hutchinsén 2006), tHMalis et all (201D) and the illustrative example in Sectl 4.3).
following relationship holds In this context, the use of an incremental estimation

scheme, able to generate online a converging) !
s=Ls(s; )u (1) (t) from (ideally) any initial approximatior*(tp), can

represent an effective alternative. Indeed, such a scheme can
where Lg 2 R™ 8 is the interaction matrix of the improve the servoing execution by approximating the ideal
considered visual features, 2 RP is a vector of control law [3) also wheriar from the desired pose and
unmeasurable 3-D quantities associatesl ¢e.g., the depth without needing special assumptions/approximations of
Z for a point feature), and = (v; ! ) 2 R® is the camera since, as*(t) ! (t), one obviously hafs ! L.
linear/angular velocity expressed in the camera frame. ByOther factors (e.g., estimation gains) being equal, the
deninge=s s asthe visual error vector, one also hasonvergence rate of a SfM scheme is mainly affected
e= Lgu. by the particular trajectory followed by the camera

If the camera/robot system isdundantw.r.t. the visual W.r.t. the observed scene, with some trajectories being more

task fank(Ls) < 6), a control law that exponentially informative/exciting than other ones. Therefore, the IBVS
regulates e(t)! O can be obtained by solving thecontroller should select (online) the "most informative'

2 Problem description

following quadratic optimization problem camera trajectory, among all the possible ones solving
the visual task, for obtaining the fastest possible SfM
min }ku r k2 convergence dur_ing t.he servoing transient. Sedtjon 3 will

u 2 (2) detail how to attain this goal.

s.t.Lsu = e

. , 2.2 Active Structure from Motion
wherer 2 R® represents, in general, the gradient of some

suitable scalar cost function representative of seconddrycuding degenerate cases (e.g., when a line projects on a

objectives. As well-known, the resolution ¢f| (2) results iﬁingle poin_t ora circle_ projects on a §egment, and so on.),
the following control law the dynamics of any image-based visual feature vegtor

in (I) can always be expanded linearly w.r.t. the unknown

u= LYe+(lg LYLgr= LYe+Pr; > 0 Vvector as follows (se¢ Espiau etal. (1992); Chaumette
(3) (2004)) .
where LY denotes the Moore-Penrose pseudoinverse of s=fnu(sit)+ “(siv) ®)

matrix Ls, and P =(lg LYLs)2R® © is used to
project the action of in the null-space of the main visual
task so thaku rk is minimized while not perturbing the
achievement of the main task (Siciliano ef al. 2009).
Any implementation of[(3) (or variants) must deal wit
the lack of a direct measurement of vectar A common
workaround is to replace the exact interaction matrix —f (s :u): ©)
Ls(s; ) with an estimatiorf's = Ls(s; *) evaluated on - uroo e
someapproximation”™ of the unknown true vector. In  Owing to the linearity of[(b) w.r.t. , the sensitivity of
this approximated case, assuming for simplicity O, the the feature dynamics w.r.t. the unknownis @=@ =

where vectorf ,(s;! )2 R™ and matrix (s;v)?2

RP ™M are functions oknownquantities. As for vector ,

since its dynamics depends on the particular geometry of
the scene, no special structure is assumed apart from a
Ibeneric smooth dependence on the system states and inputs,

closed-loop error dynamics, becomes T(s; v), that is, a function obnly known quantitie¢the
measureds and the “control vectorV). Therefore, it is
e= Lsﬁze; (4) possible to act ow in order to increase the conditioning

of the “sensitivity' T (s; v) during the camera motion.
and stability is determined by the eigenvalues of the matribhis insight has been exploited by Spica et al. (2014a)
Ls(s; )Ls(s; )Y (Malis and Chaumetie 2002). for proposing an active SfM scheme, built upon the
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dynamics [(bH6), and yielding an estimation error with aand, as a consequence, increase the convergence rate of the
assignableconvergence rate. The machinery of Spica ét astimation erroe (t).

(20144) is here brie y summarized. To conclude, we detail the above machinery for the
Let (6;”) 2 R™*P be an estimation ofs; ), and particular case of point features considered in this paper.
dene = s § as the “prediction error' and = N Let s=p=(xy)=(X=Z;Y=Z) be the perspective

as the 3-D structure estimation error. An estimation scherpgojection of a 3-D poin(X; Y; Z), and = 1=Z with,
for system|(H6), meant to recover the unmeasuraft thus,m =2 andp = 1 (note thatm > p as required). From

from the measured(t) and knowru (t), can be devised as|Spica et a.[(2014a) we have
g :%: T = (xvy Vx)2+(sz Vy)2

J =2 v XV Vv YV, XV V) XH(YV: W)y o

8 foa(s; )+ T(s;v)M+H

A fu(s; M u)+  (s;v)

@)

>
T3 =2 (v VOV (Y2 W)Y

whereH > O0and > O are suitable gains. 1)

By coupling observer[{7) to[[§}6), one obtains the ) _ o
following error dynamics 3 Plugging active sensing in Image-Based
Visual Servoing schemes
H + T(s;v)z

(s;v) +g(z: 1) (8) In the redundant case, the execution of a servoing task can

be naturally coupled with the (concurrent) optimization of
the estimation of vector by exploiting vector in (3) for
projecting any action aimed at maximizing in the null-

discussed ifi Spica et al. (2014a), the error sysf@m (8) GBpce Of _the_wsualztask. The expressipn] (10) shows that

be proven to be semi-globally exponentially stable providdd€ OPtimization of 1(t) requires an action at theamera

the p p square matrix | remains full rank during acceleration levelln particular, since

motion (therefore, availability ofn  p independent mea- 37

surements is needed). Furthermore, the unperturbed version 0

of (§) (i.e., withg = 0) enjoys a port-Hamiltonian structure o ) _ )

with the associated Hamiltonian (storage function) local maximization of { can be achieved by just following
its positive gradient via a camera acceleration vector

z

with g(z;t)= f ,(s; ;u) f,(s;*;u) being a van-
ishing perturbation termg(z;t)! 0 asz(t)! 0). As

ry 2= (12)

1+ 1+ T
Sy = T + = .
H( ; 2) 5 222. 9) u = kJ°,

U 0" k >0 (13)

'Sl'r;if&.facts will be important for the developments of Being e = L.u and, thus,e = Lou + Leu, and by
farmulating an optimization problem analogous id (2
(QSiciIiano et al.[ 2009), one can show that tkecond-
order/acceleration levatounterpart of the classical lajM (3)
for regulating the error vecta(t) to O is simply

Following|Spica et dl| (2014a), the transient response
the SfM estimationerrar(t) = (t) " (t) can be exactly
characterizedand affectedby actingonline on the camera
linear velocityv. Indeed, the convergence rate aft) is
determined by the norm of the square matrix ' (in U=ue=1LY ke kpe Lsu)+ Pr (14)

. . : > .
particular by its smallest eigenvalue 1) which plays the with k, > 0 and k, > 0. Therefore, by setting = u

role of anobservability measuréor system [(bH6). For a . . . 2
given choice of gain (a free parameter), the large? in (I4), one would obtain the desired maximization of

the faster the error convergence with, in particulgr= 0 i (ie. of the convergence rate_ of the 3-D e_st|m_at|on
if v=0 (as well-known, only a translating camera CaIq:rror) cgncurrgntly to the execution of the main ylsual
estimate the scene structure). Fask_. Th!s_strglghtforward strategy,_ altho_ugh appealln_g for
Since = (s;v),onealsohas?= 2(s; v) and |t_s sm_1pl|0|ty, is unfortunately not viable in most practical
situations because of the structural lack reflundancy
for implementing action[(13) (or any equivalent one)
in (14). Indeed, in most visual servoing applications, the
feature sets is purposely designed to constrain all the
s camera DOFs (i.erank(Ls) = 6), and, as a consequence,
J .= @i 2R!' M have a closed form expression no optimization of the camera linear velocity can be
function of (s; v) (again, known quantities). It is thenperformed via the null-space projector operalor This
possible to exploit relationshig ([L0) for affectirapline fundamental limitation motivates the development of the
2(t) during motion in order to, e.g., maximize its valuealternative strategy presented in the following section.

(H=J3 ,v+J.s (10)

s

where the Jacobian matriced , = %% 2R! 3 and
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3.1 Second-order Visual Servoing using a 02 ——
Large Projection Operator T
~ 0
An alternative control strategy, able to circumvent th —
redundancy limitations discussed above, can be devised  ,
0 1 2 3 4 5

suitably exploiting the redundancy framework originally
proposed by Marey and Chaumefite (2010). In this work, It
is shown how regulation of the full visual error vect®fa Figure 1. A representative graph of the cost function V(v) in for
m-dimensional task) can be replaced by the regulation of fts =1.ka =0:2, =0:1,k! k=0, andassuming ? = kvk?. Note
normkek (a 1-dimensional task). This manipulation resultd"® Presence of a nite upper bound for V(v) as desired.
in a null-space of (maximal) dimensi@ 1 =5 available
for additional optimizations. The machinery presented in _ . .
Marey and Chaumeite (2010) (at the rst order) can b%ffectmg )' |fg2 ker(LI), no camera\motu')n can
exploited as follows: letting = kek, we have mstantgneousl;eahze the task. Thereforany Ipcal con-

trol action would be equally affected by this issue, and no

simple switching strategy could be employed in this case.

[[v]l

ele ellLg

— = — . 6.
-7 kek ~ kek u=L u L 2R % Local minima escaping strategies, such as random walks
or global optimizations, are, on the other hand, out of the
and, at second-order, scope of this paper.
e=L u+ L u:

_ _ 3.2 Optimization of the 3-D Reconstruction
Regulation of (t)! O can then be achieved by the

following control law analogous t¢ (14) As discussed in Sedt. 2.2, the convergence rate of the 3-D
estimation erroz(t) = (t) ~(t) is determined by the
u=u =LY kv_ kp Lu+Pr; (15) eigenvalue 2. To improve the estimation performance, one
could attempt to maximize a cost function of the form
with k, > 0, k, > 0, LY = kek LTe, andP = V(u)=k {(v). This straightforward solution would
eTLSLle ° result, however, in an unbounded growthlkafk. Indeed,

L . - 2 2 I i ¢ i
.  being the null-space projection operatogl I k vk? (see[(1]L) for the point feature case and Spica

eTLsLle t al| (20144, 2015) for other examples) and, therefofe,
of the error norm with ranks 1 =75 (see/Marey arid can be made arbitrarily large by increasikgk — the faster
Chaumette (2010)). the camera motion, the larger value df

By implementing controlleif (15) in place ¢f (14) one can In order to cope with this issue, it is then necessary to
still obtain regulation of the whole visual task error sincesonsider a cost function that allows for a nite upper bound
obviously, (t) = ke(t)k! Oimpliese(t) ! 0.However, w.r.t.kvk. Among the many possible solutions meeting this
contrarily to [14), the new null-space projec®r allows requirement, we opted for the following cost function
implementing a broader range of optimization actions

including [I3) or equivalent ones. _ + 2(v) Kg 5. )
On the other hand, a shortcoming §F}(15) w.fE](14)V(U) =k log - Kuk?; >0
is that the interaction matrit is singular forkek = (16)

0 and, consequently, the projection matfx , and the for which a representative graph is depicted in Fip. 1.
pseudoinversd.”, are not well-de ned when the visual This choice is motivated by considering thag / k vk?
task is close to full convergence. As discussed in Mareyd log(x) = o(g(x)) for any polynomial functiong(x).
and Chaumette (20110), this singularity can be avoided ltherefore, for suf ciently large velocitieskgk ! 1 ), the
switching from controller [(T5) to the classical la (14)amping termkskuk? will be dominant w.r.t. the rstterm
when kek becomes sufciently small. Unfortunately, in (I6), thereby ensuring existence of a nite upper bound
however, the " rst-order' switching strategy proposed byy.r.t. kvk.

Marey and Chaumeité (2010) is not directly transposablepjaximization of V(u) is, then, obtained as best as

to the second-order case. Sectjon| 3.3 details, thereforg@sible by plugging in vector, in (1), the following
suitable “second-order' approach able to guarantee a propgfera acceleration vector

switching from [(I%) to the classical layv (14).

Remark 3.1. Note that[(1}) also suffers from another sin- Uy =T (V=
gularity occurring whene 2 ker(Ll). This corresponds,
however, to docal minimumfor the servoing itself, also

k
: rv 2 kgu: (17)

2
1
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3.3 Second-order Switching Strategy

As explained in the previous section, the
switching strategy proposed by Marey and Chaurme

rst-orde

(2010) does not simply extend to the second-order case afi
therefore, we now detail a suitable second-order switchit‘
strategy meant to avoid the singularity of controll(15"j1

when (t) = ke(t)k! 0. We start by noting that controller

u_ in (I5) imposes the following second-order dynamics to U =

the error norm

e+ ky_+tkp, =0: (18)
De ne ck(t) as the solution of8) for a given initial
condition( (to); _(to)).

Let nowt; >t be the time at which the switch from
controller [I5) to the classical law. in (I4) occurs. For
t t;, controllerue, under the assumptiorank(L g) =
m, yields

e+ kye+ kye=0: (29)

If rank(Ls) <m, as in the case studies reported in
Sect.[#, the ideal behavidr (19) can, in general, only be

approximately imposed.
Let e (t) be the solution of 9) with initial
conditions(e(ty); e(t1)), and let (t) = ke (t)k be the

corresponding behavior of the error norm. Ideally, one

would like to have

(1)  kek(t); 8t ty: (20)

In other words, the behavior of the error norm should

not be affected by the control switch at tinte, but
(t) (obtained from[(1P)) should exactly match the “idea

evolution .k(t) generated by8) as if no switch had

taken place.
While condition [(20) is easily satis ed at the rst-order

(Marey and Chaumeite 2010), this is not necessarily the 3.
case at the second-order level. Indeed, the following result

holds (see appendix B)

Proposition 3.2. For the second-order error dynam-

ics (18£19), condition[(20) holds if and only if, at the

switching timet;, vectorse(t;) ande(t;) are parallel

tte

The scalar quantity " 0 provides a measure of the
pisalignment among the directions of vectasand e

T =0 iff e ande are parallel,8e 6 0; e 6 0). One
an then minimize " , compatibly with the main task
ggulation of the error norm), by choosing veatan (I5)

!
T

T
5 kJ

Kry KLIPeLsu =

(22)
whereJ = uTL]P.Ls, and the propertieBe = P
P <P ¢ were used.
A possible switching strategy, shown in the owchart
in Fig.[4, consists of the following three different control
phases:

1. apply the norm controllen  given in [I5) with the
null-space vector de ned in ) as long as(t)

T, with + > 0 being a suitable threshold on the
error norm. During this phase, the error norm will be
governed by the closed-loop dynamifs](18) and the
convergence rate in estimatirfgwill be maximized
thanks to[(1J7);

when (t) = +, keep applying controlleu_, but
replace [(I]7) with[(22) in vector. Stay in this
phase as long as some terminal condition on the
minimization of T is reached. In our case, we
opted for a thresholdt on the minimum norm of
vectorkP J "k as an indication of when no further
minimization of T s possible in the null-space of
the error norm. Note also that, during this second
phase, (t) keeps being governed by the closed-loop
dynamics [(IB) since acts in the null-space of the
error norm (i.e., no distorting effect is produced on
the behavior of (t) by the change im);

2.

when T has been minimized, switch to the

classical controlleu, given in [I4) until completion
of the task. The minimization of " will ensure
a smooth switch as per Prop. 3.2 (and as also
demonstrated by the experimental results of Sg¢ts. 4

and®).

It is then necessary to introduce an intermediate pha§g€mark 3.3. We stress again that the main bene t of the

before the switch, during which any component ef
orthogonal tce is made negligible. To this end, let

ee'
ele

Pe 2R™ M

I'm

be the null-space projector spanning thHen 1)-
dimensional space orthogonal to vectot et also
= Pee=PelLsu: (21)

Prepared usingagej.cls

proposed switching strategy is to guaranteegnanotonic
decrease of the error norm(t) during all phases, in
particular when switching from the norm controllgr {15)
to the classical controllef (14). Such a monotonic decrease
would not be granted, in general, without a speci ¢ action
(phase 2) in the owechart). Guaranteeing a monotonic
decrease of the error norm in all conditions is particularly
relevant for, e.g., ensuring that the features do not leave the
camera fov (since their location will keep on converging
towards their desired value) and, in general, avoid erratic
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phase 1): holds when switching to phase 3) thanks to the previous
-> use [I5) with optimization action of phase 2) (whose role, as explained,
r = uy in (I7) is to enforce conditiorj (20) at the switching). Therefore, the
¥ error norm (t) will exponentially converge towards zero
no during all phases.
As for ke(t)k, the norm controller[ (15) used in phases
es 1) and 2) guarantees again exponential convergence=of
phase 2): e’ e=kek, that is, of the component efalong t_he direction
use [[T6) with of e. The component o orthogonal tcee remains bounded
r=u in@2 QUrlng phasg 1) (because of the damping gctlon embedded
T in (I7)), and is afterwards driven to zero during phase 2) by
o the term [(2R) (which, indeed, is meant to minimizek =
45“» kP cek). Finally, during phase 3) the closed-loop error
s behavior is governed by (JL9) which, clearly, guarantees an
exponential convergence of the whole vea(t).
phase 3):
use [(1#) 4 Experimental results
Figure 2. Flowchart representation of the switching strategy. This section reports the results of several experiments

meant to illustrate the approach proposed so far for

coupling the execution of a visual servoing task with the
behaviors of the features on the image plane (that cancurrent optimization of the 3-D structure estimation. All
ease the actual tracking/segmentation of the featurexperiments were run by making use of a greyscale camera
themselves). attached to the end-effector o6eDOFs Gantry robot. The
camera has a resolution 680 480px and a framerate
of 30fps The open-source VISP library (Marchand ef al.
2005) was used to implement all the image processing
We remark that the proposed scheme (active SfW (@nhd feature tracking in order to obtain a measurement of
coupled to the second-order visual servoing [14-15), nuthe visual features at the same frequency. To increase
space terms[(1f—P2) and associated switching stratagymerical accuracy, the SfM estimatqr] (7) and motion
of Fig. [J) only requires, as measured quantities, thgntroller internal states were updated with a time step of
visual featuress and the camera linear/angular velocityl ms A simple sample-and-hold Iter was then used for
u=(v;!). Indeed from the estimated, a (possibly s(t), whichis only updated &0 Hz Finally, the commands
approximated) evaluation afl the other quantities enteringwere sent to the robot 400 Hz
the various steps of the second-oder control strategyAs visual task, we considered the regulationNof= 4
can be obtained frongs; *) andu (the only “velocity' point featurep; with, thus,s = (py; :::; py) 2 R™, and
information actually needed). We also note that the level of; = (Lg,;:::; Ls,) 2 R™ ¢, m=8, with Ls, being
approximation is clearly a monotonic functionlof ~ “k the standar®® 6 interaction matrix for a point feature
(i.e., the uncertainty in knowing): thus, all quantities will (Chaumette and Hutchinsdn 2006). We then have
asymptotically match their real values as the estimatigny; :::; y) 2 RP,p=4,where ; = 1=Z; as explained
error z(t) = (t) “"(t) converges to zero (the fasterin Sect[Z.R. The tracked points were black non-coplanar
the convergence df(t), the sooner the ideal closed-loopdots belonging to the surface of a white cube. A standard
behaviors[(1]§=19) will be realized). pose estimation algorithm was exploited to obtain the

Assuming k "k is small enough, one can alsoground truth value of (t) from the known object model

address the stability of the strategy in Fjd. 2 in ordeand the measures(t).
to show that no undesired effects may arise due to theBecause of the high contrast between black dots and
switching among the different control laws. In particulawhite cube surface, the segmentation and tracking of
it is easy to show that both quantitieqt) = ke(t)k the N points were easily obtained, at video-rate, via
and ke(t)k keep bounded during motion and ultimatelythe blob tracker available in ViSP. Besides easing the
converge towards zero. First of all, we note that, duringnage processing step, this experimental setting also
all phases, the error norn(t) is governed by the closed-allowed us to reproduce (practically) identical initial
loop dynamics[(18) imposing an exponential convergenesperimental conditions across the several trials illustrated
(with assigned poles). This is obviously the case in phasiesthe following sections. The results reported in the next
1) and 2) (because of the norm controller](15)), and al&ect[6.2 will instead resort to a Lucas-Kanade tracker for

3.4 Final considerations

Prepared usingagej.cls
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segmenting and tracking a generic set of points lying ¢ 05—
a much less structured target object in order to show t 8‘3‘ =
viability of our method also in more realistic situations. S o2 S ™~
As for what concerns the optimization of the 3-C 0.1 E S~
reconstruction, we note that each feature point % 10 20 30 40 50 60
characterized by its own (independent) eigenvalde. time [s]
Optimization of the estimation of the whole vector 5 @
was then obtainedpbx considering the average ofNhe ™
eigenvalues? = & 1, 2, asquantity to be optimized.  -? \ \
Being, obviously, T \\
0 L
. . 5 _ £>(\I \]TVI , 0 10 20 mig " 40 50 60
N 0 (b)
i=1 5 %10 Is
the acceleration commar{d {17) was then simply replaced 2 E a
) et {1\
Uv = + 2I’ ! ’ kau (23) 0 40 50 60
during phase 1) of all the following experiments.
We invite the reader to watch the accompanying video
Ext.[1. * %

Z [m]

4.1 First Set of Experiments

In this rst set of experiments, we aim at illustrating the
bene ts arising from the coupling between the executio
of a visual servoing task and the concurrent active (e)
optimization of the 3-D structure estimation. To this end,

we consider the following four different cases, all startinﬁ'gure 3. First set of experiments. Fig. [(a} behavior of the error
! orm (t) for case 1 (blue), case 2 (red), case 3 (green) and case 4

from the same initial conditions: (dashed black). Fig.@} behavior of the norm of the approximation error
) ) kz(t)k = k (t) " (t)k with the same color code. Fig. behavior of

case 1) the full strategy (three phases) illustrated in Spct. Zt) when actively optimizing the camera motion (case 1 — blue line)
and Fig[2 is implemented. The estimafoy (7) is ruer not performing any optimization (case 2 — red line). In the previous

in paraIIeI to the servoing task for generating th%:ms’ tlhe l(pra.ctlcally coincident) vgrtlcal dashed blue lines 'represent

: A . the switching times between the various control phases used in case 1.
estimated (t) fed to all the various control terms. Fig.[@}} 3-D camera trajectory during case 1 with arrows representing

The active optimization of the camera motidn|(23the camera optical axis and square and circular markers representing

takes p|ace for the whole duration of phase 1; the camera initial and nal poses respectively. The three phases of
Sect.are denoted by the following color code: blue — phase 1, red —

case 2) the classical control Ia[[14) is implemented. ngase 2, green — phase 3. Fig. trajectory of the four point features
in the image plane during case 1 using the same color code, and with

estimator [D]) ISS“'" '_'un_m para”el to t_he s'ervomg crosses indicating the desired feature positions. Superimposed, the
task, but no optimization of the estimation erromitial and nal camera images. Finally, solid lines represent the result
convergence is performed; of implementing phase 2, while dashed lines represent the effects of a
direct switch from phase 1 to phase 3.
case 3) the classical control law {14) is again implemented,
but the estimator[{?) igiot run. Vector " (t) is,

instead, taken as$(t) = = const, as customary . . _
in many visual servoing applications; The following gains and thresholds were used in the

experiments: = 2000 in (7), k, = 0:0225andky = 0:3
case 4) the classical control law {14) is again implemented, (I4{1%). Moreover, only for case 1, we usled= 20,
but by exploiting knowledge of the ground truth value = 0:001andkq = 18 in (23), t = 0:21and t = 0:004
A(t)= (t) during the whole servoing execution.in the owchart of Fig.[2 and nallyk =100 in (22).
This case, then, represents the “ideal' behavior of@rthermore, in cases 1 and 2, vectbrwas initialized
could obtain if (t) were available from direct as”™(tp) = , thatis, starting from the (assumed known)
measurement. value at the desired pose also exploited in case 3.
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Let us rst focus on Fig[ 3(B), showing the evolution of  °3 = \

the estimation error norrkz (t)k = k (t) " (t)k for the 02 —h— :

four cases. From the plots one can note how the use = | :\ ! !
observer[{[7), in cases 1-2 (blue and red lines respectivel E \'\.205 T
makes it possible for the estimation/approximation err % 10 20 30 40 50 60
kz(t)k to converge faster than in case 3 (green line,, time [s]

where convergence is reached only at the end of th~ @

task, when (t)! ~ = (as obvious). Furthermore, the ., || ! 5 “"'3\‘ o
convergence time dz (t)k is almost three times shorter in = \ i PN .
case 1 (blue line) than in case 2 (red line). Inddex{t)k ~ — °° | 7, :
becomes smaller thab% of its initial value after about P S PP PP T
3:5sin case 1 w.r.t10:2sin case 2. This improvement is 0 10 oLy 5 40 0 o0
due to theactiveoptimization of the SfM occurring, during (b)

phase 1 of case 1, under the action[of (23). Indeed, looking

: Figure 4. Regulation of 4 point features. Behavior of the error norm
at Flg" one can note how the value (ﬂt) of case 1 (t) (Fig. and of k k, the measure of misalignhment between

(blue_”ne) is_apprOXim?-teM times larger than in case 2,eciors e and e (Fig. [[B)- In both plots, the blue lines represent the
(red line) during the entire phase 1. behavior of case 1 (full implementation of the switching strategy of

The fast convergence dIE(t)k I 0 also translates into Sect. [3:3), whlle cyan I|ne's represent thg direct switch from.phase. 1
to phase 3 without the action of vector r in (22). The small picture-in-

a fast accurate evaluation of the interaction mattiy picture plots provide a zoomed view of the switching phase.

and any related quantity. Indeed, from Hig. B(a), one can

notice that the behavior of(t) for case 1 (blue lineji)

quickly reaches a good match with the ideal behavior &fig.[4(a) shows the behavior of the error norii) for the

case 4 (dashed black line), afid), more importantly, keeps previous case 1 (blue line) together with the behavior of

monotonicallydecreasing during all the various phases. On(t) whennot implementing phase 2 but, instead, directly

the other hand, due to the larger error in estimatir(g) Switching from phase 1 to phase 3 (cyan line). The two

(and, hence, evaluatings), both cases 2 (red line) and 3(@lmost coincident) blue vertical lines represent the switch

(green line) present an initial increase of the error norffom phase 1 to phase 2 and then phase 3 for the rst
(t). It is worth noting how this initial divergent phaseexperiment, and the direct switch from phase 1 to phase 3

has, nevertheless, a shorter duration for case 2 w.r.t. cag@r¥he second experiment. One can note how, in the second

thanks, again, to the use of obseryér (7). experiment, the error norm(t) has a large overshoot when
sgwitching to phase 3 because of the misalignment of vectors

Ve ande at the switching time. This overshoot is, instead,

optimization of the camera motion during phase 1 of case@€arly notpresentin the rst experiment whert) keeps

Note, indeed, how the camera initially moves along a(l:pnvgrg!ng during all phases. )

approximately circular path (blue line) because of the null- A Similar overshoot can be observed in Fig. B(e), where

space term[(33) that generates an “exciting' motion for the point feature trajectories on the image, with phase 2

estimation of the four point deptt&;. It is also possible activated(solid lines) anddeactivated(dashed lines), are

to, again, appreciate the bene ts of having employed tfgPorted. _

norm controller [(T5) during phase 1: indeed, it is only Finaly, Fig.[4(b) reports the behavior &f k from (21),

thanks to the large redundancy granted by contrdllgy (15§~ the measure of misalignment among vectoende.

that the camera is made able to follow a quite ‘unusudfn® can then verify how, in the rst experimerk, k is

trajectory while,at the same timeensuring a convergent Correctly (and very quickly) minimized, during phase 2,

behavior for the error norm(t). For completeness, the redanks to[(2P).

line in Fig.[3(d) represents (the quite short) phase 2 of the ]

switching strategy (i.e., the alignment among vecwasnd 4.2 Second Set of Experiments

e), while the green line represents phase 3, i.e., the use\gé now discuss a second set of experiments that involve

the classical controllef (14). the same four cases 1—4 introduced in the previous section,
As a supplementary evaluation of the theoretical analydisit with the camera starting from a different initial pose and

of Sect[3.B, we now report, for case 1 only, an additionalith a different desired con guratios w.r.t. the previous

experiment aimed at assessing the importance of havinm. The results are reported in Hig. 5.

introduced phase 2 in the switching strategy of Seci. 3.3As compared to Fig[]3, it is worth noting how the

(i.e., of having enforced the alignment efand e before sole case 1 (blue line in Fi§. 5[a)) results in a successful

switching to the classical controllef (14)). To this endiegulation of the visual task erra(t) thanks, again, to

Prepared usingagej.cls
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the fast convergence of the estimation ekn(t)k during g~
the active optimization of phase 1 (blue line in Hig. 5(b)) 04 =< \: —~
The servoing fails, instead, in case 2 (red line in Fig.[5(a) =, R
i.e., when coupling the classical controlldr }(14) witt . \\
observer [([7) buwithout optimizing for the convergence % 0 20 0 40 50
rate ofkz(t)k. In fact, in this case, the very small value time [s]
of (t) during the camera motion (red line in F{g. 3(c)) @
makes the estimation task ill-conditioned w.r.t. noise ar 4 \',/
other unmodeled effects (including the disturbag¢e; t) = \
in (@), resulting in a divergence of the estimation errc ~ ~ ? \
kz(t)k att  9s(red line in Fig[5(H)). On the other hand, o
0 10 20 30 40 50

the active optimization of case 1 is able to increaég by time [s]
approximately a factor o40 w.r.t. case 2, thus ensuring a (b)
suf ciently high level of excitation for the camera motion
and, consequently, a quick convergence of the estimation
error kz(t)k. Failure of the servoing is also obtained in
case 3, i.e., when exploiting trexact nal value ~(t) =
, because of the large initial error of the visual task that
causes a loss of feature visibility (green line in [Fig. b(a)).
Finally, Figs[5(d) anfl 5(¢) depict the camera and feature ©
trajectories during case 1. One can, again, appreciate, in
Fig. [5(d), the initial spiralling motion of the camera that
allows the increase of (t) during phase 1. It is also
worth noting how, in case 1, the error nornit) keeps a
monotonicdecrease during the whole motion (as desired)
despite the various switches among the three phases and the

‘unusual' initial camera trajectory (blue line in Fg. §(a)). @ ©
e

4.3 Third set of Experiments Figure 5. Second set of experiments: regulation of 4 point features
. . . starting from a different initial camera pose w.r.t. the experiments in
In this last section, we report the results of two experimentsy. [3| The plot pattern and color codes are the same as in Fig. 3}

meant to show how even relatively small inaccuracies

in determining the value at the desired pose can

cause failure of the servoing when settifigt) = , is not able to impose a stable closed-loop behavior, and
as classically done in many visual servoing application#e error norm starts diverging until loss of tracking of the

The two experiments presented here involve the sarf@ature points at abouit 2:5s

problem considered in Sec{s. 4.1 gnd] 4.2 (regulation of These results then provide (for the rst time, to the best
4 point features) and differ from the starting location obf our knowledge) an experimental demonstration of the
the camera w.r.t. the target object: in the rst experimeneffects discussed in Seft. .1 and originally introduced by
the camera starts (relatively) far from the desired podéalis et al, (2010): a (rather small) error in approximating

while, in the second experiment, the camera starts at almost can be suf cient to move part of the eigenvalues of

the desired pose. In both cases, the classical second ordetrix Ls(s ; )Cs(s ;7)Y to the right-half complex

control [14) was employed by takimy= (1+ ) with plane, thus resulting in an unstable closed-loop dynamics

=( 0:03330:09,0.0424 0:0875) (thus, sincej ] even when starting arbitrarily close to the desired pose. This
0:09, simulating an uncertainty of up @%in the accuracy demonstrates, once more, the importance of resorting to an
of ). online optimized estimation of (t).

Figure[6(d) shows the behavior of the error nor(t)

for both cases: in the rst exper.irrjt.ant (blue line), the visu% Adaptive optimization of the 3-D
error starts converging from its initial (large) value but then, . .
atabout 85 the servoing diverges and the features leave structure estimation
the camera fov. An even more interesting result is obtain®de now propose a further improvement to the strategy
in the second experiment (red line): in this case, the errdetailed in Secf.]3 and experimentally validated in §¢ct. 4.

(t) starts at a very small value since the camera is alreadlje goal is to introduce amutomatic mechanism for
quite close to its desired pose. However, controller] (14daptivelyactivating/deactivatinghe optimization of SfM
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provided the camera trajectory is suf ciently exciting (i.e.,
2(t) > 0 during motion),E(t) 0 iff kz(t)k 0 (i.e.,
the estimation has converged) da¢t) > 0 otherwise.
One can then leverage knowledge B{t) for, e.g.,
(i) automatically switching from phase 1 to phase 2
when the estimation error becomes smaller than a desired
threshold, i) automatically switching from phase 3 back
(@) (b) to phase 1 when the estimation error grows larger than a
desired threshold, andiij adaptively weighting the rst

Figure 6. Third set of experiments: visual servoing of 4 point features . . . . . .
g P 9 P term in action|[(I]r) for smoothly activating/deactivating the

using a constant approximation (t) = where the value of is

corrupted by a relative error of 9%. Fig.[@)} behavior of the error norm optimization of % -
(t) for the rst (blue line) and second (red line) experiments. Fig. Let then0 E < E be a xed minimum/maximum

image plane trajectory of the 4 point features during the rst experiment threshold fotE (1‘) and de ne
with crosses indicating their desired positions. The initial and nal (i.e.
until loss of tracking) camera images are superimposed.

ke (E) : [E; E] 7! [0; 1] (25)

, . N . as a monotonically increasing smooth map WthE) =
as a function of the accuracy in estimatindt). This 0, and ke (E) = 1. Function ke (E) can be exploited

modi cation is motivated by the following considerationsfor suitably weidhtina the ontimization of2 by simpl

w.r.t. Fig.[2 and the previous experimental results: modifying i/he cogst fuglctiodlj%) as by Py

the optimization of 2 is active during the whole 2

phase 1, i.e., as long as the error norm is largeng (u; E) = k ke (E) log ;1(") ki

than some prede ned threshold (i.e.(t) 7). 2
However, this is obtained at the expense of a possible . L .

distortion of the camera trajectory as clear from, e.gr_(,esultlng in the new optimization action

Figs[3(d) an@ 5(d) which depict the camera spiralling k ke (E)

motion due to action[(23) while approaching the Uve =T yVE= ————r
nal pose. Clearly, a more ef cient strategy would

implement [(2B)only when strictly needed, e.g., asto be plugged in vectar in (I5). This modi cation clearly

long as the estimation errée (t)k = k (t) "~ (t)k grants asmooth modulatiorf the rst term in (27) from

is larger than some threshold; a full activation, in case of large estimation inaccuracies
. , (ke(E)=1 for E E), to a full deactivation if the

similarly, once in phases .2_3.’ the owchart_of_ F@_' Zstimation is suf ciently accuratkg (E) =0 forE  E).

doesé not allow any reactivation of Fhe_opt|m|zat|on Exploiting E (t) and the modi ed optimization action

of <. On the other hand, a reactivation could b iven by [2]), we propose the new (adaptive) switching

necessary in case of unforeseen events such gg,ioqv depicted in Fif] 7. This consists of the same three

e.g., an unpredictable motion of the target thal,,qeq of Sedt. 3.3, but it now exploits knowledgé ¢f)

yvould make the estimation errée (t)k to abruptly implementing an improved switching policy.

Increase. We highlight the following features of this new adaptive

We now detail a modi cation of the previous strategyStrategy: rst of all, the_ initial (possible) switch from
of Sect.[3 for addressing these issues. To this end, Wase 3 to phase 1 is performed only E(t) E
rst introduce a way to quantify the uncertainty level in(the estimation error is large enough for justifying
the estimation of the unknown vector(t). Since the @n optimization of the camera motiognd (t) 1
estimation erroe (t) is (obviously) not directly measurable,(the Vvisual error norm is large enough for preventing

we consider instead the followingeasurableguantity singularities in [(Ip)). As illustration, two scenarios will
7 typically trigger this switch:(i) a camera starting far
t

1 - _ _ enough from the desired pose and with a poor enough
E(M)= T - () ()d; T >0, (24) jnitial estimation” (tp), or (ii) an unpredicted motion of
the target object during the servoing task that causes an
whereT represents the integration window and= s increase in the error norandin the estimation uncertainty.
8 is the feedback term driving observéi (7). Indeed, ahe experiments of the next Seft. 6 will indeed address
discussed in append & (t) plays a role comparable these two practical cases. Furthermore, while in phase 1,
with the unmeasurable(t): it provides a measure of thethe optimization of the SfM will be performed only until
uncertainty of the estimatetvs. the actual . In particular, either a good enough accuracy has been readiét) €

kuk?;
(26)

2
keu  (27)
+ 2

Prepared usingagej.cls



12 The International Journal of Robotics Research XX(X)

phase 1): W across a suf cient number of different camera trajectories,
— use [I5) with the (steady-state) value reached®t) once the estimation
r= uVE in (27) has converged. This is indeed the solution adopted for the

experiments in Sedt] 6. As f@max , any (arbitrarily large)

positive value would in principle be a valid choice since, the
larger the initial approximation errdez (to)k = k (to)

" (to)k, the wider the possible range & (t). However,
exploiting the properties of observgi (7), one can prove (see
appendix C) that

phase 2).
use [[I5) with ~— K K2
r=u in (22 E(t) &:

' Therefore, if an upper bourd (to)k  zmax 0N the initial
estimation error can be assumed (as in most practical
no situations), one can explojt (28) and set
es 22
no Emax = —2%: (29)
aes For the interested reader, this result can be given an
interesting energetic interpretation (Spica 2015) as a

N phase 3): consequence of the port-Hamiltonian structurd pf (8).
use [I4)

We conclude with the following remarks: sinégt) >
] 0 as long as the estimation error has not converged, the
adaptive gairkg (E) in ) is also guaranteed to never
vanish during the estimation transient (by properly placing,
if needed, the minimum threshol). As a consequence,
the optimization of the camera motion (i.e., of(t))
will always be active during phase 1. We also note that,
Figure 7. Flowchart representation of the switching strategy exploiting  jn general, no special characterization is possible for the
the measurable error energy for triggering changes of status. behavior of E(t). Nevertheless, one can show that, if
2(t)  const> 0during motion, then the errorsyste@ (8)
E), or controller ) is close to become singulaft) < behaves as a second-order critically-damped linear system,
T). The new switching conditiok (t) < E_will then help with z(t) playing the role of the “position variables' and
in minimizing the distortion of the camera trajectory by (t) that of “velocity variables', see Spica and Robuffo
allowing a quick switch to phase 2 as soon as the estimati@iordano (20183). In this situatiok, (t)k* (and, thusk (t)
accuracy is satisfactory (see again the experiments ds well) will approximate a “bell-shaped' pro le with a
Sect[®). monotonic increase towards a maximum value followed
As a nal step, we comment about the choice of thby a monotonic decrease towards zero. Indeed, this is the
two thresholdsE and E exploited for triggering the pro le followed by E (t) during the active phases of all the
various switches and for modulating the activation ofxperiments reported in Sefc}. 6, since maximizatiof df (26)
the optimization of 2 in ). Assume the range ofdoes result (as a byproduct) ig(t)  const.
possible values ofE (t) during the camera motion can As for the stability during the switching strategy of
be lower/upper bounded @ Emn E(t) Emax. Fig.[]], considerations analogous to what discussed in
It would obviously be meaningful to choode and E  Sect[3.# hold in this case too. The main differences are the
suchthaEyn E < E  Emax for properly tuning the following: in an ideal condition in which*(tg) = (to),
adaptive switching strategy. one would havéz (t) 0 and, therefore, the system would
Concerning the lower bouné i, , being E(t) 0, start and remain in phase 3) during the whole task (by
a straightforward choice would bE,, =0. However, always using the full error controllef ([14)). If, instead,
presence of measurement noise and other non-idealitges initial (large enough) estimation error is present, the
can, in practice, prevelit (t) to fall below some minimum quantity E (t) would start increasing, triggering a switch
value even after convergence of the estimation error (uptm phase 1). From here on, the same behavior of the
some residual noise). If needed, this minimum value camevious (non-adaptive) switching strategy is implemented
be, e.g., experimentally determined by simply averagingith, thus, a switch to phase 2) followed by phase 3) until

(28)
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completion of the task. The same would also hold whenever
an external “disturbance' (as, e.g., an unmodeled target
motion) occurs, making (t) to temporarily increase.

6 Experimental results of the adaptive
strategy @

6.1 First experiment

Inthis rst case study, we considered the same experimental
setup of Secf.]4. Vectdr(to) was taken coincident with the
(assumed known) at the nal pose, resulting in a bound
kz(tg)k’= =5:3e 3in ). As for the adaptive strategy
thresholds, we sé =10 °® andE =10 “. (b)

At the beginning of the motion (phase 3), the eigenvalue

2 is considerably small due to the low information content
of the camera trajectory (Fi. 8[c)) and, analogously to
case 2 in Sec@z, the estimation eredt) even starts
increasing because of measurement noise, the disturbance
term g in (8), and other non-idealities (Fif. 8[b)). At
timet 1:1s however, the quantit§ (t) increases over
the thresholdE, because of the high uncertainty in the
estimated* (Fig.[8(d)), thus triggering the switch to phase 1
and the corresponding optimization of the camera motion.
The optimization actiorf (27) results in a fast increase of the
mean eigenvalue(t) (Fig.) and, as a consequence, in a
fast convergence of the estimation ez¢t) (Fig.[8(b)) that (d)
practically vanishes attinte 4 s As a consequenck,(t)
decreases again below the minimum thresiioiddicating
that a suf cient level of accuracy has been reached. This
then triggers the (very quick) switch to phase 2 and,
subsequently, the switch back to phase 8 at4:4 s

Note how the adaptive gaitke (E), used in [(2]),
correctly (and smoothly) activates and deactivates the
optimization of 2 during phase 1 as clear from F@(e).

It is worth noting that the switch from phase 1 to
phase 3 occurs when the error norit) is still well above
the threshold 1 indicating singularity of controller (15).
Therefore, the distortion of the camera trajectory (depicted
in Figs. and[ 8(d)), needed to maximiz&, lasts
considerably less than in the non-adaptive case where the
switch would have occurred only at(t) = . Finally, ® @
one can also appreciate how the error norgt) correctly Figure 8. Regulation of 4 point features using the adaptive strategy
converges monotonically towards zero once the estimatienSect. [ The three phases of Fig. [7] are denoted by the following

: color code: blue — phase 1, red — phase 2, green — phase 3. Fig.
error z(t) becomes small enough, i.e., for 4s see behavior of the error norm (t) with superimposed a horizontal dashed

Fig'@' . ) ) black line indicating the threshold 7. Fig.@ behavior of the norm of
At t 595 the target object is purposely displacethe estimation error kz(t)k = k (t)  “(t)k. Fig. [c} behavior of the
causing both the servoing and the estimation error to grdvgan eigenvalue 2. Fig. [(d)} behavior of E () with, superimposed,

. . . two dashed horizontal lines indicating the minimum and maximum
with a corresponding increase Bi(t) above the threshold thresholds E and E. Fig. behavior of the adaptive gain ke (E).

E. This, in tum’_ tri_ggers the S_Wi_tCh _tO phase ltat In all of the previous plots, vertical dashed lines represent the times
6:1s for (re-)activating the optimization of the camerat which the target object was intentionally displaced. Figs. [(f)] and

motion until convergence of the estimation error is, agai@ front and side views of the camera 3-D trajectory with arrows
. presenting the camera optical axis and square and circular markers

reaChe,d at  91s The same pattern then repeats tWb‘:presenting the camera initial and nal poses, respectively.

more times at  10:6sandt 17:2sbecause of the two

©

(e)
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additional displacements of the target object during the
camera motion.

As explained in the previous section, the switch from
phase 1 to phase 3 (and vice-versa) is also a function of the
current value of the error norm(t) for avoiding possible
singularities in[(Ip). This is, indeed, the case of the third
switch from phase 1 to phase 3 triggeredt at 13:3s by
the error norm falling below the thresholg with E (t) still
above the minimum valug&. Similarly, the fourth switch
from phase 3 to phase 1tat 17:9sis triggered only when

9] T even thougtE (t) has already grown ovét .

By looking at Fig.[8(d), it is nally worth noting
how E(t) always keeps below the theoretical bound (b)
kz(tp)k?= =5:3e 3 given in ) despite the three
intentional target displacements occurred during the
servoing.

@

6.2 Second experiment ©
C
This last experiment is meant to illustrate the feasibility of

our approach in more realistic conditions compared to the
use of simple black dots on a white background as done
so far. To this end, we considered regulation16fpoint
features belonging to a much less structured object, that is,
the shrunken piece of textured paper shown in Fig.]9(g)
(and in Ext[1). Extraction and tracking of tt® features @
was achieved by exploiting the well-known Lucas-Kanade
algorithm implemented in OpenCV. Finally, we made use
of the thresholE = 0:0015andE = 0:03, and initialized
Mto)=  asbefore, witlkz (to)k?= =6:3e 3for (29).
Figure[9 reports the results of the experiment: the robot
starts, in phase 3, driven by the classical law (14) but, being ©
the mean eigenvalue? rather small during this phase,
the estimation erroz(t) does not converge. Likewise, the
error norm (t) slightly increases because of the too rough
approximation in™. However, the quantitf (t) starts to
grow and, at 15 it exceeds the threshol triggering
the switch to phase 1 (Fig. 9{d)). During this phase (which
lasts untilt 59 the optimization of the camera motion is
then able to maximize the eigenvalué. This results in a ® ©)
quick convergence of the estimation error that practically
vanishes att 4:5s Similarly, the quantityE(t) rst  Figure 9. Regulation of 10 point features on an unstructured object

. . . ing a KLT tracker and the adaptive strategy of Sect. [5} The same
reaches a maximum peak value (WhICh IS anyway Iowgiantities of the previous Fig. [8| are reported here with the only

than the theoretical bound (28) as expected), and then stagtsption of Fig. [@)] that depicts the trajectory of the 10 point features
decreasing back to zero thus allowing a smooth deactivatignthe image plane with crosses indicating the desired feature position

of the optimization action thanks to the adaptive gl&u'_:n and, sgpgrimposed, two (semi-translparent) camera screenshots taken
(Fig. ) Finally, att 5s the error norm (t) falls at the initial and nal robot con guration.
below the thresholdt inducing a quick switch to phase 2
(alignment ofe ande) followed by a last switch to phase 3
until completion of the servoing task.
From these results, one can then appreciate how the
behavior of the adaptive strategy is essentially equivalenttteat the proposed approach can be seamlessly applied to
what obtained in the previous case studies, thus con rmingore complex/realistic situations.
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7 Conclusions proposed in this work and most IBVS schemes) can be
. . . . prone to local minima and generate trajectories with sub-
In this paper we investigated how to couple the execution .. - ' : i .
! . . . optimal observability properties. In this regard, introducing
of a visual servoing task with an active SfM strateg ; . ;
. : planning phase over an extended time horizon could be
meant to optimize the reconstruction of the 3-D scene

structure. This was achieved by projecting the ac'uveene cial also for what concerns a better handling of the

StM action within the null-space of the considered'SIb'"ty constraint (see, e.d., Chesi and Vicino (2004) for

IBVS task, and by suitably extending to the second” gxample in this sense). . .
Finally, we also plan to apply our machinery to mobile

order the framework originally introduced by Marey an(z 4/ vi bot inped with onboard
Chaumette| (2010) for granting the needed redundancy oun ylng) robols, equipped with onboard cameras,
&l_nd possibly subject to non-holonomic constraints.

an effective optimization of the camera motion. A (secon
order) switching strategy, meant to avoid some structural
singularities of such framework, was also developed and |ndex to multimedia extensions
experimentally validated. As an additional contribution, we
also detailed an adaptive strategy ableatstomatically
activate/deactivate the optimization of the SfM as a function
of the current estimation accuracy.

The reported experimental campaign clearly showed the Proof of Prop.
bene ts of the approach in terms of: i) (obtaining a Let (t)=[ ;(t)] 2 R? 2 be the state-transition matrix

faster convergence of the structure_estima_t_ion error duriB@sociated to the linear time-invariant systém| (18). From
the servoing transient w.r.t. non-active case$,ifiposing . |;ssical system theory (Kaildth 1998), we have
an improved closed-loop IBVS behavior by signi cantly

mitigating the negative ?ffectg pf an inaccurate knovx_/ledge ek = 11(t t) 1+ 1t t) g 8ty
of the scene structurejii} minimizing the deformation (30)

of the camera trajectory (consequence of the active Sfyhere we set; = (t1)and ; = (t;) for simplicity. We
action) thanks to the adaptive activation/deactivation of thgsq note that[(19) is governed_ component-wise, by the

StM optimization. same dynamics of (18). Therefore, the solutior{ of (19) is
Despite the successful results, however, the proposed

coupling between visual control and active perceptiore (t)= ;(t ti)e;+ 1(t ti)e;; 8t ty; (31)
has still a number of open points that deserve further
developments. To start with, due to the nonlinear natuyghere, againe; = e(t;) ande; = e(t1).
of the system dynamics, stability of each individual
estimation/control block does not imply, in general, stability
of their composition (the separation principle is only vali@"d€:
for linear time-invariant systems). While the proposed e
experimental results show a promising level of robustness e = k%km = kerk—
in this sense, a more formal characterization of the ! !
convergence domain is yet to be found. Therefore,[(3]L) becomes

As discussed in Remafk 3.3, guaranteeing a monotonic
decrease of the visual error norm can help avoiding erratic,,, _ kesk . .
behaviors of the features on the image plane. However, i) = ul W)+ tl)T € 8t b
may not be suf cient to ensure that the features will not (33)
leave the camera fov in all possible situations (e.g., whéasulting in an error norrke (t)k
the desired feature location is close to the image plane
borders). Similarly, other typical “feasibility’ constraintsq (Hk (t)= u(t t)+ 0t ty) kesk
(such as joint limits or collision avoidance) were also 1
ignored in the proposed strategy. These issues could be ke; k
addressed by considering the observability maximization = ult )+ nlt ) 1
as an additional task in a multi-objective constrained =t t) 1+ 1t tokeik: 8t ty:
optimization problem. This latter could then be resolved (34)
locally by exploiting one of the several prioritized multi-Now, being = kek one has
task resolution frameworks proposed in the literature (see,
e.g.,|Escande et a[. (2014); Flacco et [al. (2015)). As well el

Eo—— : X _&e 35
known, however, local optimization strategies (like the one 4= 1 (35)

Extension Mediatype Description
Video Video of the esperiments.

If e; and e; are parallel then (20) holds: assuminge;
are parallel, vectoe; can be expressed as

(32)

kelk

1
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which, exploiting [(3), yields; = ke;ke] e;= # = kesk.  These two implications then prove the rst item of the

Pluggingke:k = _; in (34) nally results in Proposition, that is,k (t)k 0 ( k z(t)k 0. The
proof is concluded by noting that the remaining two
(= wu(t t1) 1+ 2t t1)g; 8t g (reverse) implicationskz(t)k > 0 a.e. =) k (t)k> 0

_ . a.e.ank (t)k> Oa.e.=) k z(t)k> 0a.e. (needed for
thus showing that (t)  ex(t), i.e. fulllment of proving the second item of the Proposition) are just the

condition [20) as claimed. logical negations of the two ones listed above.
If holds then e; and e; are parallel: from (33+3])
we have (omitting the time dependency for brevity) Prop.[C-1 can now be exploited for proving the initial

5 s o by main claim. Indeed, sinc&(t) is de ned as the moving
kek™ 11 1+2 1 121a% 121 (36) average of signat (t)k? (see|(2h)), it follows thaE (t) =
0if kz(t)k 0O over (at least) the integration window.

and Therefore, convergence of the estimation emzét) will
2 2T 4 Ta + 2aT necessarily mal_<e the quantiB/(t) vanish as desired. On
ke (t)k ile; e1+2 11 126, € i leglgl (37) theother hand, kz(t)k > Oa.e.=) k (t)k > Oa.e., the
= 11i1t2 1 ow2aat peer moving averagdq (24) over any non-in nitesimal integration

indow T > 0 will necessarily stay positive, thus
where [35) was used. By imposing conditi¢n](20)[to| (36rmply|ng thatE (t) > 0q.e.d..
[37) we then have

Proof of bound (28): this bound can be easily proven
2« ke®Mk® =) 2,2 Zele =) _=ketki by exploiting the port-Hamiltonian interpretation of the

(38) error dynamics[{8) brie y introduced in Sedt. 2.2. With

Since  is just the projection of vectoe; along the reference td Spica and Robuffo Giordaho (2013) (where a
direction ofe; (see again (35)), conditiofi (88) necessarilsull analysis can be found), it is indeed possible to show that

requires vectors; ande; to be parallel as claimed. the Hamiltonian function[{9) decreases over time towards
its global minimum a{ ; z) = ( 0; 0), provided the usual
. ] ) :
C Properties of E(t) hypothesis of an exciting camera motions(t) > 0) is

satis ed. Therefore, along the trajectories|of (8) it is

Relationship between E(t) and the estimation error
z(t): if 2(t) > 0 during the camera motion thef(t) 0 H ((t);z(t) H ( (to); z(to)); 8t to:
0 iff kz(t)k O (i.e., the estimation has converged) (39)
and E(t) > O otherwise (i.e., the estimation has not yeWe now note that, being the feature vectoa measurable
converged). quantity, one caralwaysinitialize 8(to) = s(to) resulting

In order to prove this claim, we start by showing thén (tg) = 0. By employing this initialization (adopted in
following facts: all the reported case studies), and exploitinf (9-39), the

. . . ... following bound easily follows
Proposition C.1. If the camera motion is exciting 9 y

(e, 2(t)>0), thenk (Dk 0 (0 k z(k Oand 1 1

k ()k> Oa.e. () k z(t)k> Oa.e. 7K (K H ((1);z() H ( (to); z(to) = 2—kz(to)k2:
(40)

Proof. Being % the smallest eigenvalue of matrix ', The proof is completed by noting that, from standard

the hypothesis 2 > 0 implies full row-rankness of the calculus,

(low-rectangular)p m matrix . Considering now the

error dynamics(8), the following holds 4 h [ 2
ynamics ) ’ Em=7 O (4 max T () 2
k (Dk 0 =) k z()k 0 if k ()k 0O then ot '
(t) 0 and (t) 0. The rst row of (g) then (41)
reducesto 'z  Owhichimplieskz(t)k Osince  We conclude by noting thgf|(9) (and, consequeritly} (40—
matrix is full row-rank by hypothesis; [41)) is no longer valid in presence of (unmodeled)

perturbations such as the several target displacements
kz(t)k 0 =) k (t)k Oifkz(t)k 0,the rst discussed in Sedi. §.1. In this case, an external amount of
row of (g) reduces too= H . Being the matrix energy could (in general) be injected into systgin (8) with a
gain H positive de nite, it follows that, at steady- consequent increase of the total enertff) and a possible
state, the only possible solutionit) 0. violation of bound|[(3P).
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