Automatic Generation of Functional Annotation Rules Using Inferred GO-Domain Associations

Seyed Ziaeddin Alborzi 1 Sabeur Aridhi 1 Marie-Dominique Devignes 1, * Rabie Saidi 2 Alexandre Renaux 2 Maria J. Martin 2 David W. Ritchie 1, *
* Auteur correspondant
1 CAPSID - Computational Algorithms for Protein Structures and Interactions
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : The GO ontology is widely used for functional annotation of genes and proteins. It describes biological processes (BP), molecular function (MF), and cellular components (CC) in three distinct hierarchical controlled vocabularies. At the molecular level, functions are often performed by highly conserved parts of proteins, identified by sequence or structure alignments and classified into domains or families (SCOP, CATH, PFAM, TIGRFAMs, etc.). The InterPro database provides a valuable integrated classification of protein sequences and domains which is linked to nearly all existing other classifications. Interestingly, several InterPro families have been manually annotated with GO terms using expert knowledge and the literature. However, the list of such annotations is incomplete (only 20% of Pfam domains and families possess MF GO functional annotation). We therefore developed the GODomainMiner approach to expand the available functional annotations of protein domains and families. Based on our ECDomainMiner approach, we use the respective associations of protein sequences with GO terms and protein domains to infer direct associations between GO terms and protein domains. Finally, we used our calculated GO-Domain associations to devise a systematic way to generate high confidence rules for protein sequence (or structure) annotation.
Type de document :
Communication dans un congrès
Function-SIG ISMB/ECCB 2017, Jul 2017, Prague, Czech Republic
Liste complète des métadonnées
Contributeur : Seyed Ziaeddin Alborzi <>
Soumis le : mercredi 9 août 2017 - 12:09:12
Dernière modification le : jeudi 14 février 2019 - 11:48:02


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01573070, version 1


Seyed Ziaeddin Alborzi, Sabeur Aridhi, Marie-Dominique Devignes, Rabie Saidi, Alexandre Renaux, et al.. Automatic Generation of Functional Annotation Rules Using Inferred GO-Domain Associations. Function-SIG ISMB/ECCB 2017, Jul 2017, Prague, Czech Republic. 〈hal-01573070〉



Consultations de la notice


Téléchargements de fichiers