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COHERENT TEMPORAL EXTRAPOLATION OF LABELED IMAGES

Grégoire Malandain, Gaël Michelin

Université Côte d’Azur, Inria, CNRS, I3S, France

ABSTRACT

In developmental imaging, 3D+t series of microscopic images allow
to follow the organism development at the cell level and have now
became the standard way of imaging the development of living or-
gans. Dedicated tools for cell segmentation in 3D images as well
as cell lineage calculation from 3D+t sequences have been proposed
to analyze these data. For some applications, it may be desirable
to interpolate label images at intermediary time-points. However,
the known methods do not allow to locally handle the topological
changes (ie cell. division). In the present work, we propose an ex-
trapolation method that coherently deformed the label images to be
interpolated.

Index Terms— time-lapse, cell-lineage interpolation, labeled
image interpolation

1. INTRODUCTION

Acquiring temporal series of living data has became the standard
way of imaging the motion or the evolution or the development of
living organs. In developmental imaging [1], 3D+t series of micro-
scopic images allow to follow the organism development at the cell
level. Depending on the acquisition protocol and the microscopic
modality, the time interval between two acquisitions may range from
a few minutes (e.g. ciona embryo as in [2]), which allows a quasi
realtime acquisition of the development, to several hours (e.g. ara-
bidopsis meristem as in [3]), where several rounds of cell division
may take place between two acquisitions in addition to large geo-
metric changes.

In the later case, it may be desirable to interpolate images at in-
termediary time points. It may be for visualization or educational
purpose (e.g. to build a movie of continuous development). This can
be achieved by cross-fading from the acquisition at one acquisition
time to the one at the next acquisition time (as in Fig. 3): as a conse-
quence, all topological changes (new walls) appear simultaneously
and progressively. However, to the authors’ knowledge, there are
no means to build an interpolated series, with grey-level or labeled
images, where one can control the occurrence of cell division.

We propose in this article to design a coherent extrapolation
scheme for labeled images (with known correspondences), so that
segmented area border do superimpose at each intermediary time-
point. This way, we ensure a continuous deformation of the seg-
mented areas, and we have a means to easily put any cell division at
any intermediary time-point. We assume that deformations have al-
ready been computed between two successive acquisitions, and that
the lineage is also known (e.g. [4]). We first recall some notions
about extrapolation and interpolation on grey-level images, before
describing the proposed approach. We also establish some links
with nearby literature, and demonstrate the equivalence with the
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well known shape-based interpolation [5]. Implementation details
are presented before the conclusion.

Experiments were conducted on two successive 3D acquisitions
on a wild type plant of Arabidopsis thaliana (protocol described in
[3]) whose segmentations (obtained as in [6]) have been manually
corrected when necessary. Fig. 1 displays parts of homologous sec-
tions as well as their segmentations. Please note that acquisitions
and processing are 3-dimensional, while presented results consist in
2D extracted sub-images.

Fig. 1. Left, a sub-image extracted from a meristem volume with the
associated cell segmentation. Right, a sub-image extracted from the
meristem imaged 12 hours later with the associated cell segmenta-
tion. The boxes point cell divisions that occur between the acquisi-
tions.

2. TEMPORAL INTERPOLATION OF GREY-LEVEL
IMAGES

For the sake of simplicity, let us consider two images I0 and I1, and
the transformation T0←1 that allows to resample I0 into I1 frame,
i.e. to compute I0 ◦ T0←1

1. Estimating the image It at an inter-
mediary position t ∈]0, 1[ usually results from two operations. First,
both I0 and I1 are extrapolated and resampled in the frame of It and
second It is calculated using these two resampled images.

The first operation requires to estimate both T0←t and T1←t, i.e.
the transformations from It towards I0 and I1, that enable to re-
sample I0 and I1 in the frame of It by I0 ◦ T0←t and I1 ◦ T1←t.
Resampling is usually achieved through bi- or tri-linear interpola-
tion, or with more elaborate operators [7].

Let us consider a point M1 of I1, the transformation T0←1 pairs
it with M0 of I0 such that M0 = T0←1M1. Let us assume the
linearity of the displacements due to the transformation: the point
Mt of It paired withM0 andM1 through transformations T0←t and
T1←t lies on the line joining (M0, 0) and (M1, 1) in the 3D+t space
(see Fig. 2(a)). Mt can then be computed from M1 and T0←1:

Mt = (1− t)M0 + tM1 = (tId + (1− t)T0←1)M1

1An integer-valued d-dimensional image I can be defined as a function
I : Zd → N. Given an interpolation method, it can be defined over Rd.
Geometric transformations T are also functions T : Rd → Rd, thus we will
denote by I ◦ T the image I resampled by transformation T .



(a) (b)

Fig. 2. Left, grey-level interpolation (sec. 2): It(Mt) is com-
puted from I0(T0←tMt) and I1(T1←tMt). Right, label extrapo-
lation (sec. 3): a couple of valid labels (`0, `1) is built at Mt with
`0 ∈ Br0(T0←tMt) and `1 ∈ Br1(T0←tMt).

where Id denotes the identity transformation, yielding

Tt←1 = tId + (1− t)T0←1 and T1←t = T−1
t←1 (1)

The computation of T0←t can be done by using again the as-
sumption of linearity, which results in

T0←t =
1

1− tId−
t

1− tT1←t (2)

T0←t and T1←t allow to extrapolate and resample respectively
I0 and I1 at the intermediary time t, for instance for a linear interpo-
lation scheme.

Fig. 3. The two middle images exemplified the grey-level interpo-
lation from the left image (Fig. 1) to the right one. The inner walls
indicating cell division appears progressively and simultaneously in
both cells that divide, which is unrealistic.

Finally, one single image It can be interpolated from the ex-
trapolated I0 and I1 into It frame (see Fig. 3), ie I0 ◦ T0←t and
I1 ◦ T1←t with

It = (1− t)× I0 ◦ T0←t + t× I1 ◦ T1←t (3)

3. TEMPORAL EXTRAPOLATION OF LABELED IMAGES

Let consider now label images L0 and L1 that correspond to the
segmented grey-level images I0 and I1 (see Fig. 1). More precisely,
I0 (resp. I1) is parted into shapes S0

i (resp. S1
j ). Values of L0 (resp.

L1) are labels `0i (resp. `1j ) that correspond to shapes shape S0
i (resp.

S1
j ).

A naive approach consists in independently extrapolating the la-
beled images (as a grey-level interpolation scheme will make appear
intermediary values, a nearest neighbor scheme is preferred). L0

and L1 images can then be resampled with the transformation T0←t

and T1←t. This is exemplified in Fig. 4 that clearly demonstrates
that shape borders do not superimpose: the blue cell of I0 (top left
image) has two children (orange and pink cells) in I1 (bottom right
image), the border of blue cell is different from the one of both or-
ange and pink cells at any time point.

Fig. 4. Nearest neighbor resampling. First row, L0 (at left) and its
resampled versions at t ∈ {0.33, 0.66, 1} (at right). Second row, L1

(at right) and its resampled versions at t ∈ {0, 0.33, 0.66}.

Let also assume that lineages have been established between la-
bels from L0 and labels from L1. To be more generic, let assume
that a set Ik of labels from L0 corresponds to a set Jk of labels
from L1. Typically, when studying cell lineage, Ik is composed of
one shape/cell while Jk is composed of its children cells [6, 4]. The
sets Ik form a partition of L0 (the same for Jk and L1). Thus, it
is desired that, in the resampled images at intermediary time points,⋃

i∈Ik
S0
i superimpose with

⋃
j∈Jk

S1
j .

When these correspondences are not a one-to-one mapping (i.e.
when cell division arises, or when shapes appear or disappear), cal-
culating one single interpolated image at t does not make sense since
it implicitly involves some choices (e.g. the time where the division
occurs). Instead, we propose to extrapolate conjointly and coher-
ently both images L0 and L1, that is, to build the sequences {L0

t}
and {L1

t}, where L0
0 = L0 and L1

1 = L1, and where the border of
the sets Ik and Jk superimposes at every time.

A couple of labels
(
`0i , `

1
j

)
is said to be valid if they belong to

corresponding sets. Let V denote the set of valid couples:(
`0i , `

1
j

)
∈ V ⇔ ∃k, i ∈ Ik and j ∈ Jk

The set of corresponding labels for one label is denoted by

L
(
`0i
)

=
{
`1j |

(
`0i , `

1
j

)
∈ V

}
For t ∈]0, 1[, we want to build the label images L0

t and L1
t ,

corresponding to the image It, such that the borders of correspond-
ing sets superimpose. A point Mt of It projects respectively on I0

and I1 at M0 and M1 through the transformations T0←t and T1←t,
M0 = T0←tMt and M1 = T1←tMt. The principle of the proposed
method is to identify the best couple of valid labels

(
`0i , `

1
j

)
∈ V ,

with `0i (resp. `1j ) in the vicinity of M0 (resp. M1) as depicted by
Fig. 2(b).

Let d0
i (resp. d1

j ) be the distance of M0 (resp. M1) to the shape
S0
i (resp. S1

j ), this distance being obviously 0 if M0 ∈ S0
i :

d0
i = min

M|L0(M)=`0i

‖MM0‖

The cost c
(
`0i , `

1
j

)
of a couple of valid labels

(
`0i , `

1
j

)
is defined by

c
(
`0i , `

1
j

)
= (1− t)d0

i + td1
j (4)

Such a formulation ensures both a continuous and smooth variation
of extrapolated images with t and the continuity of L0

t towards L0

for t → 0 (resp. L1
t towards L1 for t → 1). The best couple at



Mt is then chosen as the one of minimum cost, meaning that L0
t and

L1
t are built by L0

t (Mt) = `0ı̂ and L1
t (Mt) = `1̂ with

(
`0ı̂ , `

1
̂

)
=

arg min(`0i ,`1j)∈V c
(
`0i , `

1
j

)
.

4. RESULTS

Fig. 5 presents the results of the proposed resampling scheme. L0
0 =

L0 (upper left image) and L1
1 = L1 (bottom right image) remain

unchanged, and noticeable differences can be seen in other images
when compared to Fig. 4: the border of blue cell is identical to the
one of both orange and pink cells at any time point.

Fig. 5. First row, L0 (at left) and its resampled versions at t ∈
{0.33, 0.66, 1} (at right). Second row, L1 (at right) and its resam-
pled versions at t ∈ {0, 0.33, 0.66}. Cell color are randomly chosen
and similar colors may erroneously suggest topological splitting.

Having at hand border-compatible resampled label images opens
the way to build simulated images. Indeed, given a couple of corre-
sponding sets (Ik,Jk), it is straightforward to replace the set Ik at
t by the set Jk at t. This is exemplified by Fig. 6. At left, we re-
place, on a voxel-to-voxel basis, the bottom cell in L0

t at t = 0.66
by its children cells extracting from L1

t at t = 0.66. This can be
done for grey-level images too. Middle of Fig. 6 displayed the same
operation, i.e. the voxel-to-voxel replacement at t = 0.66 of the in-
tensity values from I0

t of the set Ik by the intensity values from I1
t

of the set Jk (where a new wall has appeared). Such a naive voxel-
to-voxel replacement is clearly not indicated for grey-level images,
and a more realistic image is obtained with a progressive transition
at the replaced cell border (right of Fig. 6). This last image is to be
compared to the two middle images of Fig. 3.

Fig. 6. Images simulated at t = 0.66. Left, label image where
only the bottom cell has divided. Middle, naive grey-level image
composed of I0

t except for the dividing cell extracted from I1
t . Right,

same image, with a progressive transition at the replaced cell border.

5. RELATED WORKS

The proposed cost definition (Eq. 4) is a weighted sum of positive
(or null) distances, which looks similar to the one used in shape-
based interpolation [5] (SBI) where distances may also be negative.
We demonstrate that the proposed approach is equivalent to SBI, ac-
cording transformations are equal to identity and label images are
binary. Indeed, in shape-based interpolation, a distance map is com-
puted from the shape interface, with a (say) negative distance inside
the shape S and positive outside. The iso-surface at 0 defines then
the object. From the distance maps D0 and D1 issued from I0 and
I1, an image Dt is computed to characterize the shape St at t

Dt(M) = (1− t)D0(M) + tD1(M)

The binary shape at t is deduced from the negative values ofDt. The
interpolation occurs whenD0(M) andD1(M) have opposite signs.
Let us consider D0(M) < 0 (M is inside S0) and D1(M) > 0 (M
is outside S1) without loss of generality. We have

M ∈ St ⇔ (1− t)D0(M) + tD1(M) < 0

⇔ tD1(M) < −(1− t)D0(M) (5)
and M 6∈ St ⇔ tD1(M) > −(1− t)D0(M)

Say now that these images are two-labeled (` for the inside and ¯̀for
the outside). M being inside S0, we have d0

` = 0 (zero distance to
the inside) and d0

¯̀ = −D0(M) (recall that D0(M) < 0). M being
outside S1, we have d1

¯̀ = 0 and d1
` = D1(M). With the proposed

approach, to decide whether M at t should be labeled either ` (in-
side) or ¯̀(outside) comes to compare the costs (1− t)d0

` + td1
` and

(1− t)d0
¯̀ + td1

¯̀ and to choose the label giving the minimum

M ∈ St ⇔ (1− t)d0
` + td1

` < (1− t)d0
¯̀ + td1

¯̀

⇔ td1
` < (1− t)d0

¯̀

⇔ tD1(M) < −(1− t)D0(M)

Inequality (6) is identical to condition (5), which demonstrate the
equivalence.

SBI have also been used in a multi-label context, e.g. to build an
average atlas from a set of labeled images in [8]. Their method was
designed for one-to-one correspondences, and not for many-to-many
correspondences as enabled here. Moreover, the proposed (naive)
implementation is less efficient than the one proposed in this arti-
cle. Last, it only builds the average label image, and not a weighted
average as proposed here.

6. IMPLEMENTATION DETAILS

A naive implementation may consists in computing distances in L0

and L1 for each pair of corresponding sets, and computing the best
couple from these distance maps (as described in [8]). This is clearly
inefficient since for most of the points Mt (more than 80 % of the
voxels in our experiments), the labels associated to its projections
into I0 and I1 (M0 = T0←tMt and M1 = T1←tMt) are a valid
couple of labels (see Fig. 7): the associated distance for both M0

and M1 is 0, so is the cost, and this is an absolute minimum.
Thus, we propose to search for labels into spheresBr0(M0) and

Br1(M1) of increasing radii r0 and r1 centered at M0 and M1. We
start with r0 = r1 = 0 (i.e. with the couple

(
L0(M0), L1(M1)

)
)

and let increase r0 and r1 by δr0 and δr1 until a valid couple(
`0i , `

1
j

)
∈ V is found. To increase the radii at most by 1, we chose{

t < 0.5 δr0 = t
1−t

δr1 = 1

t > 0.5 δr0 = 1 δr1 = 1−t
t



Fig. 7. First row, L0 (at left) and its resampled versions at t ∈
{0.33, 0.66, 1} (at right). Second row, L1 (at right) and its resam-
pled versions at t ∈ {0, 0.33, 0.66}. Color points out voxels where
nearest neighbor interpolation yields corresponding sets; white areas
(at cell border) indicates that corresponding sets have to be searched
further.

Let us assume we found
(
`0i , `

1
j

)
∈ V with `0i ∈ L0 ∩Br0(M0) and

`1j ∈ L1 ∩ Br1(M1). We have to check whether a ”better” couple(
`0i′ , `

1
j′
)

can be found if we still increase r0 and r1, verifying

(1− t)d0
i′ + td1

j′ = c
(
`0i′ , `

1
j′
)
< c

(
`0i , `

1
j

)
= (1− t)d0

i + td1
j (6)

For such a couple
(
`0i′ , `

1
j′
)

we have either `0i′ 6∈ L0 ∩ Br0(M0) or
`1j′ 6∈ L1 ∩Br1(M1) (otherwise

(
`0i′ , `

1
j′
)

would already have been
compared to

(
`0i , `

1
j

)
).

Without loss of generality, let us assume `0i′ 6∈ L0 ∩ Br0(M0).
It comes that d0

i′ > r0 ≥ d0
i and for Eq. (6) to stand, we need

d1
j′ < d1

j . We have also `0i′ ∈ L
(
`1j′
)
. Thus a necessary condition

for
(
`0i′ , `

1
j′
)

to exist is ∃`1j′ , `0i′ such that

either

{
`1j′ ∈ L1 ∩Br1(M1) | d1

j′ < d1
j

and `0i′ ∈ L
(
`1j′
)

with `0i′ 6∈ L0 ∩Br0(M0)
(7a)

or

{
`0i′ ∈ L0 ∩Br0(M0) | d0

i′ < d0
i

and `1j′ ∈ L
(
`0i′
)

with `1j′ 6∈ L1 ∩Br1(M1)
(7b)

Let us define the set J ′ (and similarly I ′) of labels `1j′ in L1 ∩
Br1(M1) that have corresponding labels not in L0 ∩Br0(M0), i.e.

J ′ =
{
`1j′ ∈ L1 ∩Br1(M1) | d1

j′ < d1
j and

∃`0i′ ∈ L
(
`1j′
)

with `0i′ 6∈ L0 ∩Br0(M0)
}

If both sets J ′ and I ′ are empty, then
(
`0i , `

1
j

)
is the global minimum.

In our experiment, this condition was always sufficient to stop the
search. For completeness, let study the case where one of the set is
non-empty, say J ′ 6= ∅. We exhibit then a bound on the radius r0

for the search of `0i′ .
Let d1

J′ = minj′∈J′ d1
j′ . `

0
i′ is to be searched in L0∩BR0(M0)

with R0 > r0. A bound on R0 can be computed since we want
Eq. (6) to be verified.

(1− t)R0 + td1
J′ ≤ (1− t)R0 + td1

j′ < c
(
`0i , `

1
j

)
⇔ R0 <

1

1− t
(
c
(
`0i , `

1
j

)
− td1

J′
)

= d0
i +

t

1− t
(
d1
j − d1

J′
)

Equivalently, if I ′ 6= ∅, the bound R1 on r1 is

R1 < d1
j +

1− t
t

(
d0
i − d0

I′
)

Hence, once we found a valid couple
(
`0i , `

1
j

)
∈ V , we check

whether the condition (7) is verified. If no, we can stop. If yes, we
compute the bounds R0 and/or R1 and keep r0 and/or r1 increasing
until either the condition (7) is no more verified or the bounds are
reached.

7. CONCLUSION

We proposed in this article a method that extrapolates two series of
coherent segmentations between two given segmentations and both
the transformation and the many-to-many mapping that relies them.
We demonstrated the equivalence with the shape-based interpolation
method, and proposed an efficient implementation method. Such
a method allows to interpolate temporally continuous (as cell bor-
ders or union of cell borders) from one image to the next as well
as introducing cell division at any desired time point. While used
in connection with biological knowledge, this allows to build realis-
tic movies of organism development. In addition, such an approach
may be easily extrapolated to patient-dedicated atlas construction,
by a weighted sum of known atlases. The proposed method can eas-
ily be extended to other weighting functions than distances (e.g. log
odds [9]), although it should not change drastically the results in our
targeted applications.
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