Sobolev regularity for first order Mean Field Games

Abstract : In this paper we obtain Sobolev estimates for weak solutions of first oder variational Mean Field Game systems with coupling terms that are local function of the density variable. Under some coercivity condition on the coupling, we obtain first order Sobolev estimates for the density variable, while under similar coercivity condition on the Hamiltonian we obtain second order Sobolev estimates for the value function. These results are valid both for stationary and time-dependent problems. In the latter case the estimates are fully global in time, thus we resolve a question which was left open in [PS17]. Our methods apply to a large class of Hamiltonians and coupling functions.
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01575277
Contributeur : Alpár Richárd Mészáros <>
Soumis le : vendredi 18 août 2017 - 16:11:40
Dernière modification le : mardi 22 août 2017 - 01:02:48

Fichiers

FINAL_jameson_alpar.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01575277, version 1
  • ARXIV : 1708.06190

Collections

Citation

P. Jameson Graber, Alpár R. Mészáros. Sobolev regularity for first order Mean Field Games. 2017. 〈hal-01575277〉

Partager

Métriques

Consultations de la notice

37

Téléchargements de fichiers

36