V. Abrishami, J. Vargas, X. Li, Y. Cheng, R. Marabini et al., Alignment of direct detection device micrographs using a robust Optical Flow approach, Journal of Structural Biology, vol.189, issue.3, pp.163-176, 2015.
DOI : 10.1016/j.jsb.2015.02.001

N. Azzabou, N. Paragios, F. Guichard, and F. Cao, Variable Bandwidth Image Denoising Using Image-based Noise Models, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-7, 2007.
DOI : 10.1109/CVPR.2007.383216

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.5801

F. Becker, B. Wieneke, S. Petra, A. Schroder, and C. Schnorr, Variational Adaptive Correlation Method for Flow Estimation, IEEE Transactions on Image Processing, vol.21, issue.6, pp.3053-3065, 2012.
DOI : 10.1109/TIP.2011.2181524

T. Brox, From pixels to regions: partial differential equations in image analysis, 2005.

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, High Accuracy Optical Flow Estimation Based on a Theory for Warping, European Conference on Computer Vision (ECCV), pp.25-36, 2004.
DOI : 10.1007/978-3-540-24673-2_3

A. Bruhn, J. Weickert, and C. Schnörr, Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods, International Journal of Computer Vision, vol.61, issue.3, pp.61211-231, 2005.
DOI : 10.1023/B:VISI.0000045324.43199.43

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.7916

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, A Naturalistic Open Source Movie for Optical Flow Evaluation, European Conference on Computer Vision (ECCV), pp.611-625, 2012.
DOI : 10.1007/978-3-642-33783-3_44

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.399.5529

T. Corpetti and E. Mémin, Stochastic Uncertainty Models for the Luminance Consistency Assumption, IEEE Transactions on Image Processing, vol.21, issue.2, pp.481-493, 2012.
DOI : 10.1109/TIP.2011.2162742

URL : https://hal.archives-ouvertes.fr/hal-00694584

M. Dawood, F. Buther, X. Jiang, and K. P. Schafers, Respiratory Motion Correction in 3-D PET Data With Advanced Optical Flow Algorithms, IEEE Transactions on Medical Imaging, vol.27, issue.8, pp.1164-1175, 2008.
DOI : 10.1109/TMI.2008.918321

J. Delpiano, J. Jara, J. Scheer, O. A. Ramírez, J. Ruiz-del-solar et al., Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy, Machine Vision and Applications, pp.675-689, 2012.
DOI : 10.1523/JNEUROSCI.6248-09.2010

O. Demetz, D. Hafner, and J. Weickert, Morphologically Invariant Matching of Structures with the Complete Rank Transform, International Journal of Computer Vision, vol.3, issue.93, pp.220-232, 2015.
DOI : 10.1007/s11263-011-0422-6

L. Denis, E. Thiébaut, F. Soulez, J. Becker, and R. Mourya, Fast Approximations of Shift-Variant Blur, International Journal of Computer Vision, vol.23, issue.5, pp.253-278, 2015.
DOI : 10.1109/ICCV.2011.6126278

URL : https://hal.archives-ouvertes.fr/ujm-00979825

M. Drulea and S. Nedevschi, Total variation regularization of local-global optical flow, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp.318-323, 2011.
DOI : 10.1109/ITSC.2011.6082986

M. Drulea and S. Nedevschi, Motion Estimation Using the Correlation Transform, IEEE Transactions on Image Processing, vol.22, issue.8, pp.3260-3270, 2013.
DOI : 10.1109/TIP.2013.2263149

D. Fortun, P. Bouthemy, and C. Kervrann, Optical flow modeling and computation: A survey, Computer Vision and Image Understanding, vol.134, pp.1-21, 2015.
DOI : 10.1016/j.cviu.2015.02.008

URL : https://hal.archives-ouvertes.fr/hal-01104081

D. Fortun, P. Bouthemy, and C. Kervrann, Aggregation of local parametric candidates with exemplar-based occlusion handling for optical flow, Computer Vision and Image Understanding, vol.145, pp.81-94, 2016.
DOI : 10.1016/j.cviu.2015.11.020

URL : https://hal.archives-ouvertes.fr/hal-01001758

A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.3354-3361, 2012.
DOI : 10.1109/CVPR.2012.6248074

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.228.9969

B. Horn and B. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.1651

B. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, International Joint Conference on Artificial Intelligence, pp.674-679, 1981.

R. Ranftl, S. Gehrig, T. Pock, and H. Bischof, Pushing the limits of stereo using variational stereo estimation, 2012 IEEE Intelligent Vehicles Symposium, pp.401-407, 2012.
DOI : 10.1109/IVS.2012.6232171

H. A. Rashwan, M. A. García, and D. Puig, Variational Optical Flow Estimation Based on Stick Tensor Voting, IEEE Transactions on Image Processing, vol.22, issue.7, pp.2589-2599, 2013.
DOI : 10.1109/TIP.2013.2253481

J. Revaud, P. Weinzaepfel, C. Harchoui, and Z. Schmid, EpicFlow: Edge-preserving interpolation of correspondences for optical flow, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298720

URL : https://hal.archives-ouvertes.fr/hal-01097477

A. Wedel, D. Cremers, T. Pock, and H. Bischof, Structure- and motion-adaptive regularization for high accuracy optic flow, 2009 IEEE 12th International Conference on Computer Vision, pp.1663-1668, 2009.
DOI : 10.1109/ICCV.2009.5459375

M. Werlberger, T. Pock, and H. Bischof, Motion estimation with non-local total variation regularization, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2464-2471, 2010.
DOI : 10.1109/CVPR.2010.5539945

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.171.388

L. Xu, J. Jia, and Y. Matsushita, Motion detail preserving optical flow estimation, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1744-1757, 2012.
DOI : 10.1109/CVPR.2010.5539820

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.6916

J. Yang and H. Li, Dense, accurate optical flow estimation with piecewise parametric model, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298704

H. Zimmer, A. Bruhn, and J. Weickert, Optic Flow in Harmony, International Journal of Computer Vision, vol.28, issue.4, pp.1-21, 2011.
DOI : 10.1007/978-3-642-03641-5_16