The Mean-CVaR Model for Portfolio Optimization Using a Multi-Objective Approach and the Kalai-Smorodinsky Solution

Abstract : The purpose of this work is to present a model for portfolio multi-optimization, in which distributions are compared on the basis of tow statistics: the expected value and the Conditional Value-at-Risk (CVaR), to solve such a problem many authors have developed several algorithms, in this work we propose to find the efficient boundary by using the Normal Boundary Intersection approach (NBI) based on our proposed hybrid method SASP, since the considered problem is multi-objective, then we find the Kalai-smorodinsky solution.
Type de document :
Article dans une revue
MATEC Web of Conferences, EDP sciences, 2017, 105, pp.4. 〈10.1051/matecconf/201710500010 〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01575730
Contributeur : Abderrahmane Habbal <>
Soumis le : lundi 21 août 2017 - 15:38:41
Dernière modification le : vendredi 12 janvier 2018 - 01:49:53

Fichier

matecconf_iwtsce2017_00010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Rajae Aboulaich, Rachid Ellaia, Samira El Moumen, Abderahmane Habbal, Noureddine Moussaid. The Mean-CVaR Model for Portfolio Optimization Using a Multi-Objective Approach and the Kalai-Smorodinsky Solution. MATEC Web of Conferences, EDP sciences, 2017, 105, pp.4. 〈10.1051/matecconf/201710500010 〉. 〈hal-01575730〉

Partager

Métriques

Consultations de la notice

192

Téléchargements de fichiers

261