
HAL Id: hal-01575805
https://inria.hal.science/hal-01575805

Submitted on 21 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online active supervision of an evolving classifier for
customized-gesture-command learning

Manuel Bouillon, Eric Anquetil

To cite this version:
Manuel Bouillon, Eric Anquetil. Online active supervision of an evolving classifier for customized-
gesture-command learning. Neurocomputing, 2017, 262, pp.77 - 89. �10.1016/j.neucom.2016.12.094�.
�hal-01575805�

https://inria.hal.science/hal-01575805
https://hal.archives-ouvertes.fr

Online Active Supervision of an Evolving Classifier
for Customized-Gesture-Command Learning

Manuel Bouillona,b,∗, Eric Anquetila,b

aINSA de Rennes, Avenue des Buttes de Coesmes, 35043 Rennes, France
bIRISA, CNRS UMR 6074, Campus de Beaulieu, 35042 Rennes, France

Abstract

Touch sensitive interfaces enable new interaction methods, like gesture commands. For users to easily memorize more than a dozen
of gesture commands, it is important to enable gesture set customization. The classifier used to recognize drawn symbols must
hence be customizable – able to learn from very few data – and evolving – able to learn new classes on-the-fly and improve during
its use. The objective of this work is to obtain a gesture command system that cooperates as best as possible with the user: that
learns from its mistakes without soliciting the user too often. This paper presents a novel approach for the online active learning
of gesture commands, with three contributions. The IntuiSup supervisor monitors the learning process and user interactions. The
Evolving Sampling by Uncertainty (ESU) algorithm enables to maintain the error/interaction compromise over time. The Boosted-
ESU (B-ESU) method optimizes interaction impact to fasten system learning speed. The efficiency of our approach is evaluated on
the publicly available ILG Data Base of gesture commands. Experimentation shows the effectiveness of the supervision strategy
and improvements both in term of accuracy and learning speed.

Keywords: Handwritten Gesture Command, User Interaction, Online Active Supervision

1. Introduction

With the increasing use of touch sensitive screens, human-
computer interactions are evolving. New interaction methods
have been designed to take advantage of the new potential of
interaction offered by those interfaces. Among them, a new
concept has recently appeared: to associate commands to ges-
tures (see Figure 1). Those gesture commands [1, 2] enable
users to execute various actions simply by drawing the asso-
ciated symbols. Previous studies [3, 4] have shown that en-
abling customization is essential to help user memorization of
gestures. In order to use such gesture commands, a handwritten
gesture recognition system is required. Moreover, if gestures
are customized, the classifier has to be flexible and able to learn
with very few data samples.

Gesture commands give rise to a cross-learning situation
where the user has to learn and memorize the gesture set,
and the classifier has to learn and recognize drawn gestures.
Enabling customization of the gesture commands is essential
for user memorization. On the other hand, enabling users to
choose their own gestures may lead to commands with simi-
lar or strange gestures that are hard to recognize by the classi-
fier. We must assist the user to avoid similar gestures during
this definition step, by providing a dynamic feedback on po-
tential confusion risks [5]. Moreover, we can’t expect users to
draw much more than a few gesture samples per class, so the

∗Corresponding author
Email addresses: manuel.bouillon@irisa.fr (Manuel Bouillon),

eric.anquetil@irisa.fr (Eric Anquetil)

classifier must be able to learn with very few data. A lot of
very powerful classifiers exist, like Support Vector Machines or
Neural Networks for example. However, such offline systems
don’t improve during their use and don’t evolve with the user
writing style. Indeed, novice users usually draw gestures slowly
and carefully, but as they become more and more expert, users
draw their gestures more fluidly and rapidly. In that case, we
want the classifier to adapt to the user, and not the other way
round! More flexibility in a classifier requires an online sys-
tem, a system that learns from the run-time data flow and adapt
to its changes.

Evolving classification systems have explored in the last
decade to meet the need for classifiers that work in changing
environments [6, 7]. They use online learning algorithms to
adapt to the data flow and cope with class adding (or removal)
at run-time. Some evolving template matching classifiers ex-
ist, like the $1 classifier [8] for instance; and some simple sys-
tems, such as nearest neighbors classifiers, or Bayesian classi-
fiers, can be made incremental easily, but their performances
are quite limited on complex tasks. This work is based on a
much more powerful classifier – namely Evolve [9] – which is
an evolving first order fuzzy inference system [7]. It can start
learning from scratch, and then learns incrementally in real time
from the run-time data flow, to adapt its model and to improve
its performance during its use.

The online learning algorithm is a supervised algorithm that
requires labeled data. However, labeling data without errors re-
quire user interactions, and soliciting the user has a cost. Label-
ing interactions are annoying for the user and reduces gesture-
commands fluidity. In this context, the optimization of user-

Preprint submitted to Neurocomputing November 9, 2016

system interaction is complex (user and system cross-learning),
but essential for gesture command recognition. This paper fo-
cuses on the online active supervision of the evolving classifier
learning, to train the classifier during its use at minimal cost.

This paper presents a novel online active learning supervisor
– namely IntuiSup – which optimizes user-system interactions
in online learning situations. The IntuiSup supervisor combines
two supervision strategies:

• an implicit supervision strategy,

• an explicit supervision strategy.

Two explicit supervision strategies are presented in this paper:

• ESU: Evolving Sampling by Uncertainty,

• B-ESU: Boosted Evolving Sampling by Uncertainty.

First contribution of this paper is the online active super-
visor IntuiSup that combines implicit and explicit supervision
mechanisms, to optimize user interactions and system learning.
In the context of gesture command recognition, the only way
of knowing the true label of a gesture is to interact with the
user (explicitly or implicitly). However, soliciting the user after
each command cancel the very interest of gesture commands!
The implicit supervision strategy consists of taking advantage
of implicit validations of system recognitions by the user: if he
continues his action without canceling or undoing the executed
command, he implicitly validates the recognition. The explicit
supervision consists of asking the user to explicitly validate the
recognized command, to obtain data label and be able to train
the classifier.

Second contribution is the new algorithm for explicit supervi-
sion: the Evolving Sampling by Uncertainty (ESU) algorithm.
The ESU algorithm uses the classifier confidence to make the
sampling decision (in a similar way than a reject option). The
user is solicited to obtain data true label when the confidence
of the recognition is low. A low confidence means that the data
sample is complex to recognize, and it is very important to be
able to learn from complex data. The ESU sampling algorithm
makes the sampling evolve dynamically to adapt the supervi-
sion to system learning and environment changes. Selecting
data samples that have a low recognition confidence allows to
reduce recognition errors. Although, a selected gesture may be
better than a wrong command, it is not desirable to have a lot of
user interactions either. There is a trade-off between the number
of errors and the number of user interactions.

Third contribution is the boosting method that enhance the
previous sampling algorithm to make B-ESU (Boosted - Evolv-
ing Sampling by Uncertainty). We designed a learning boost-
ing method that improves system learning speed, during both
initial learning and concept drifts (environment changes). In
our evolving context, each selected data sample represents an
additional labeled data sample available for the classifier learn-
ing. As a consequence, it is important to select enough data
to improve the classifier efficiently, at least before the learning
process has converged. More precisely, it is interesting to se-
lect more data at the beginning of system learning, to quickly

Figure 1: Gesture command used to insert furniture in an architectural plan in
the Varchitect application (freely available on Windows store).

improve system performance, and then to reduce the sampling
rate. In the same way, when concept drifts appear, the sampling
rate is raised to fasten system evolution and adaptation to the
changes.

We evaluate our approach, and our three contributions, on
the publicly available ILG Data Base [10] of customized ges-
ture commands. This database is very interesting for two main
reasons. First, gestures are chronologically ordered (in their
drawing order) which enables to see the evolution of user writ-
ing styles with time. Second, for the majority of the database,
gesture classes were freely chosen by the writers themselves
(see Figure 6). These reasons make this database unique and
representative of the real use of an online classifier used for
gesture command recognition. The experimentation we con-
ducted shows the effectiveness of our approach for the online
active supervision of an evolving classifier of customized ges-
ture commands.

This paper is organized as follows. We present in Section 2
the state-of-the-art in the field of online classification, as well
as in the field of active learning. Section 3 describes the ar-
chitecture of our evolving fuzzy classifier, and its incremental
learning algorithm. We detail in Section 4 the new IntuiSup
supervisor which combines implicit and explicit supervision.
Section 5 presents the new Evolving Sampling by Uncertainty
(ESU) algorithm to make the explicit supervision evolve. Next,
Section 6 details the new boosted method B-ESU that we de-
signed to optimize user interactions. Finally, we present the
results of our realistic experimentation, and show the improve-
ments induced by our approach with our three contributions, in
Section 7. Section 8 concludes and discusses future work.

2. Online Classification State-of-the-Art

In this work, we use an evolving classification system, with
an incremental learning algorithm, that smoothly follows all
changes in the data stream, but different approaches also ex-
ist. This section presents an overview of the state-of-the-art in
the fields of online classification, as well as in the field of ac-
tive learning. It will show the interest of an evolving system for
online classification, present the main active learning problems
and discuss the different architectures that can be used.

2

2.1. Online Classification and Evolving Systems
Several approaches can be considered to tackle the problem

of changing data stream classification (online classification):
re-learning the system, using a sliding window, having an on-
line learning classifier or using an evolving ensemble of weak
classifiers [11]. If all approaches are interesting and have dif-
ferent advantages, not all are suitable for customized gesture
command recognition.

A first and simple approach is to train a new classifier each
time new data samples are available. As a consequence, this
approach can be quite effective on a stream where data arrives
in chunks, or when few recognition are made [12], but it cannot
be considered for fast data streams that require quick and con-
tinuous adaptation. Obviously, this approach is very expensive,
both in term of computational cost and memory requirement,
which makes it unsuitable for gesture commands recognition.
Additionally, keeping all data will not be relevant when changes
happen in the data stream, and changes will happen as the user
get use to the gesture command system.

A method to adapt to concept drifts in the data stream is to
use a sliding window that only contains most recent data sam-
ples [13][14]. The use of a sliding window also has the advan-
tage of limiting both the computational cost and the memory
requirement. When using a sliding window of data, there is a
trade-off between the reactiveness and the precision of the sys-
tem. A short window guarantees a quick adaptation to concept
drifts, but will limit recognition performance; and a long win-
dow ensures enough learning data to minimize the error rate,
but will lengthen system adaptation to changes. Using a slid-
ing window is possible, but relearning the classifier each time a
new gesture is drawn is definitely not the most efficient way of
recognizing gesture commands.

A second approach is to monitor the data stream to detect any
change – the so-called concept drifts – and trigger an adaptation
mechanism to modify the classifier accordingly. This method
is efficient when changes are occasional, and stable periods
quite long between those concept drifts. Some drift detectors
are based on changes in the probability distribution of the data
samples [15], and others on changes in the classification accu-
racy [16]. In our case, this method isn’t appropriate since we
not only want our system to adapt to abrupt concept drifts, but
also to smoothly follow slow concept shifts.

We have very few initial learning data, so we need an online
learning system – an evolving classifier – that will incremen-
tally learn during its use. Moreover, an evolving system, with
an incremental learning algorithm, will smoothly follow any
changes in the data stream. Most acknowledged requirements
for online evolving systems are:

• each data sample must be processed only once,

• memory and computing time must be limited,

• system learning can be interrupted and its quality
shouldn’t be altered.

Some simple and well-known classifiers are incremental by na-
ture, like the Bayes classifier and the Nearest Neighbor clas-
sifier [17], even if the later require a forgetting mechanism to

limit the complexity growth. Some more complex systems are
designed to learn online, to adapt their model in a fast and ef-
ficient manner to be able to learn incrementally and in real-
time. Among those system, we can note the Fuzzy Rule Based
Systems [6, 7], Learning Vector Quantization [18], Neural Net-
works [19] and some Decision Trees [20][21]. Such evolving
system perfectly correspond to the requirements induced by the
context of gesture command recognition.

Another approach that should be mentioned is the use of an
ensemble of weak classifiers, whose predictions are combined
to make the final decision [22]. Ensemble of classifiers can be
evolving at different levels. First, the combination can evolve,
to adapt the weights assigned to the different individual clas-
sifiers [23]. Second, the individual classifiers can be evolving
systems themselves, and adapt to the data stream [24]. Third,
the ensemble itself can evolve, some individuals can be re-
moved from the ensemble, and new ones can be added, trained
on most recent data [25]. Even if ensemble classifiers are pow-
erful, they aren’t as efficient as evolving system to learn from
very few data.

Customized gesture command recognition requires an evolv-
ing classifier. Moreover, the supervision of the online learning
process requires an active learning strategy.

2.2. Active Learning

The idea of active learning is that the learning system it-
self will choose which data samples will be used for the learn-
ing [26]. A classifier can achieve equivalent performance with
only part of the learning data, if those data have been correctly
chosen. Active learning is motivated by the fact that obtaining
labeled data for learning is costly, which is definitely the case
in the context of customized gesture command recognition.

Active learning problems can be divided in three categories:

• query synthesis problems,

• pool sampling problems,

• stream sampling problems.

In the case of query synthesis problems, it is the learner that
generates the data sample that will be labeled, from the input
space [27]. The generated sample can be the juxtaposition of
any values within the feature ranges. However, this way of pro-
ceeding isn’t appropriated for symbols recognition, as gener-
ated samples will often be unrecognizable characters with no
semantic meaning.

Pool sampling are the active learning problems where the
learner has to choose a subset of samples to be labeled from
a pool [28]. In pool sampling problems, the learner can only
get the labels of a small number of samples, but it can also use
the unlabeled samples with some semi-supervised learning al-
gorithm. The pool sampling scenario applies to batch problems,
but not to online problems.

A online classification task implies the last scenario, so-
called stream sampling. It means that data samples arrive in
a stream and the learner has to decide, on a sample per sample
basis, if it wants the current sample to be labeled [29] [30] [31].

3

This is definitely the problem we face in gesture command
learning: to decide after each gesture command if it will be
interesting to learn from this gesture, and then ask the user for
its true label.

For any of the above mentioned active learning problems, the
learner has to make the so-called sampling decision, to decide
which are the samples that will be used for learning. The most
common way of making this decision, called uncertainty sam-
pling, is to query the label of the sample that the learner is the
least certain of how to label [30][32]. However, different meth-
ods also exists to make the sampling decision such as querying
by committee [33], expected model change [34], expected error
reduction [35], variance reduction [36] and density weight [34].

In our case, the classifier makes this sampling decision with
the simple but powerful uncertainty sampling method [26].
In order to build an uncertainty sampling method we need a
method to evaluate the classifier confidence during the recog-
nition process. It enable to ask the user to label data samples
for which the system is likely to make a recognition error, and
which will be very interesting for the evolving classifier learn-
ing.

This paper focuses on the online active supervision of a
recognition system, in the context of customized gesture com-
mand. Optimizing user-system interaction in this cross-learning
context is actually an active learning problem called stream
sampling. We use an evolving fuzzy classifier to cope with
this online learning situation. Next section present the evolv-
ing classifier we use, which is a fuzzy inference system. Its
architecture will be presented, as well as the confidence mea-
sure that is used to evaluate recognition confidence and make
the active learning sampling decision.

3. Evolving Fuzzy System Overview

This work is based on the evolving classifier Evolve [9, 37],
which is a first order Fuzzy Inference System (FIS). It is able to
start learning from scratch, add new classes on-the-fly and learn
incrementally, which makes it very suitable for customized ges-
ture command learning. However, it is interesting to notice that
the Intuisup supervisor, combining the supervision strategies,
the sampling algorithm and the boosting method, is indepen-
dent from the classifier. Any other evolving classifier could be
used with our approach, provided that a confidence measure is
available to make the active learning sampling decision.

This Section presents the evolving classifier on which this
work is based to recognize gesture commands: Evolve [9],
which is a first order Fuzzy Inference System (FIS). We start by
presenting some related works and describing the architecture
of a first order FIS. Next, we present the incremental learning
algorithm for the online learning of Evolve. Then, we present
the confidence measure that is used by the IntuiSup supervisor
to trigger user interactions.

3.1. Related Works
Evolving fuzzy systems are not new [38], but have really

started to be used in the last decade [6, 7] and then intensively
studied [39, 40, 41].

DENFIS [42], eTS [6, 43] and FLEXFIS [44] are among
the first evolving fuzzy systems. A lot of similar fuzzy sys-
tems have been presented since then. Evolve [9] uses gener-
alized fuzzy rules in arbitrarily rotated position for increased
precision, which was then re-used on regression problems [45]
Another simplified alternative to define the antecedent part of
fuzzy evolving systems has been presented, using data Clouds
and density distribution [46]. GENEFIS [47] delivers a sensible
trade-off between high predictive accuracy and parsimonious
rule base while reckoning tractable rule.

Evolving fuzzy system can handle concept drifts [41], mainly
with the integration of gradual forgetting factors. PANFIS [48]
can split, merge or remove fuzzy rules to improve concept drifts
adaptation. pClass [49] can also recall old rules to better follow
reoccurring concepts.

Most of the fuzzy models cited above are of type 1 [38]. Re-
cently, type 2 model have been presented [50, 51]. They use
non-linear Chebyshev polynomials as rule conclusions to ob-
tain better performances.

Some evolving fuzzy systems also integrate active learning
strategies. Most of them are based on rejection principles, like
the single-pass active learning approach of Lughofer [52], em-
ploying reliability concepts in the form of confusion and dis-
tance rejection (so-called conflict and ignorance models); on
confusion measure [53]. Active learning modules can also be
incorporated into meta-cognitive learning algorithm [54, 51].
The problem of active learning under concept drifts has also
been studied by Lughofer et al. [55], who monitors the classifier
behavior with a modified version of the Page-Hinkley statistical
test.

Our approach, namely the IntuiSup supervisor, is also based
on rejection principles. However, it extends previous ap-
proaches in the sense that it combines implicit and explicit su-
pervision in its active learning strategy. This strategy make it
possible to take advantage of the applicative context of ges-
ture command recognition to further reduce user interaction re-
quirements. The IntuiSup supervisor is also designed to handle
smoothly gradual and abrupt concept drifts, with its boosted
learning strategy (See Section 6).

3.2. System Architecture
We focus here on Fuzzy Inference Systems (FIS) [56],

with first order conclusion structure – called Takagi-Sugeno
FIS [38]. FIS have demonstrated their good performance for
incremental classification of changing data flows [7]. More-
over, they can easily be trained online – in real time – and have
a good behavior with new classes. In this section, we present
the architecture of the evolving FIS Evolve [9] on which this
work is based.

A Fuzzy Inference System consists of a set of fuzzy inference
rules like the following example [40][57].

Rule(i) : IF x is close to C(i) (1)

THEN ŷ(i) = (ŷ(i)
1 ; . . . ; ŷ(i)

c)> (2)

where x ∈ Rn is the feature vector, C(i) the fuzzy prototype
associated to the i-th rule and ŷ(i)> ∈ Rc the output vector of

4

the i-th rule. Rule premises are the fuzzy membership to rule
prototypes, which are clusters in the input space. Rule conclu-
sions are fuzzy membership to all classes, that are combined to
produce system output.

3.2.1. Premise Structure
Our model uses rotated hyper-elliptical prototypes that are

each defined by a center µ(i) ∈ Rn and a co-variance matrix
Σ(i) ∈ Rn×n (where n is the number of features) [9].

Σ(i) =


σ2

1 . . . c1,n
...

. . .
...

cn,1 . . . σ2
n

 (3)

By taking into consideration the covariance between features,
we allow our fuzzy prototypes to have a rotated hyper-elliptical
form.

The activation degree α(i)(x) of each fuzzy prototype is com-
puted as follows [6]:

α(i)(x) =
1

1 +
(
x − µ(i))>(Σ(i))−1(x − µ(i))>

)1/2 (4)

3.2.2. Conclusion Structure
In a first order FIS, rule conclusions are linear functions of

the input [6]:
ŷ(i)> = (l(i)1 (x) ; . . . ; l(i)c (x)) (5)

l(i)k (x) = x> · θ(i)
k = θ(i)

0,k + θ(i)
1,k · x1 + · · · + θ(i)

n,k · xn (6)

The i-th rule conclusion can be reformulated as:

ŷ(i)> = x> · Θ(i) (7)

with Θ(i) ∈ Rn×c the matrix of the linear functions coefficients
of the i-th rule:

Θ(i) = (θ(i)
1 ; . . . ; θ(i)

c) =


θ(i)

1,1 . . . θ(i)
1,c

...
. . .

...

θ(i)
n,1 . . . θ(i)

n,c

 (8)

3.2.3. Inference Process
The inference process consists of three steps [6]:

1. Activation degree is computed for every rule and then nor-
malized as follows:

α(i)(x) =
α(i)(x)∑r

k=1 α
(k)(x)

(9)

where r is the number of rules.
2. Rules outputs are computed using Equation 7 and system

output is obtained by sum-product inference:

ŷ =

r∑
k=1

α(k)(x) · ŷ(k) (10)

3. Predicted class is the one corresponding to the highest out-
put:

class(x) = arg
c

max
k=1

(ŷk) (11)

Figure 2 represents a FIS with first order conclusion structure
as a radial basis function (RBF) neural network [58].

3.3. Rule Creation

In Evolve, rule creation is triggered by the incremental clus-
tering algorithm eClustering [6].

When a new sample arrives, it will either integrate an exist-
ing cluster, of create a new one. New clusters shall only be
created for new data samples containing enough new informa-
tion, meaning that they should be significantly different from
existing clusters. To evaluate the importance of new samples
regarding the existing clustering, we use their potential values.
The potential of a data sample is defined as the inverse of the
sum of all its distances to other data samples [59]:

P(xt) =
1

1 +
∑t−1

i=1 ||xt − xi||
2

(12)

This potential can also be computed recursively [6] :

P(x(t)) =
t − 1

(t − 1) · β(t) + γ(t) − 2 · ζ(t) + t − 1
(13)

Where

β(t) =

n∑
j=1

x2
j (t) (14)

γ(t) = γ(t − 1) + β(t − 1), γ(1) = 0 (15)

ζ(t) =

n∑
j=1

x j(t) · η j(t) (16)

η j(t) = η j(t − 1) + x j(t − 1), η j(1) = 0 (17)

When the potential of the new sample is greater than the po-
tentials of every existing clusters, then a new cluster is created,
based on this sample.

The potentials of existing clusters C(i) are also updated on the
arrival of a new sample:

P(C(i)) =
(t − 1) · P(C(i))

t − 2 + P(C(i)) + P(C(i)) ·
∑n

j=1 ‖µi − x · (t − 1)‖2j
(18)

x

C(1)

C(r)

Π

Π

Π

Π

Σ ŷ1

Σ ŷc

θ(1)
1
θ(1)

c

θ(r)
1

θ(r)
c

...
...

...

...

first rule

ŷ(r)
c

α(r)

x>· θ(r)
1

Figure 2: First order FIS as a radial basis function (RBF) neural network

5

3.4. Incremental Learning Process

Let xi (i = 1..t) be the i-th data sample, Mi the model at
time i, and f the learning algorithm. The incremental learning
process can be defined as follows:

Mi = f (Mi−1, xi) (19)

whereas a batch learning process would be:

Mi = f (x1, . . . , xi) (20)

In our classifier Evolve [9], both rule premises and conclu-
sions are incrementally adapted:

1. Rule prototypes are statistically updated to model the run-
time data:

µ(i)
t =

(t − 1) · µ(i)
t−1 + xt

t
(21)

Σ
(i)
t =

(t − 1) · Σ(i)
t−1 + (xt − µ

(i)
t−1)(xt − µ

(i)
t)

t
(22)

2. Rule conclusions parameters are optimized on the data
flow, using the Recursive Least Squares (RLS) algorithm:

Θ
(i)
t = Θ

(i)
t−1 + α(i)C(i)

t xt(y>t − x>t Θ
(i)
t−1) (23)

C(i)
t = C(i)

t−1 −
C(i)

t−1xtx>t C(i)
t−1

1
α(i) + x>t C(i)

t−1xt
(24)

3.5. Confidence Measure

This section presents the confidence measure that is used by
the IntuiSup supervisor to make the active learning sampling
decision.

For the explicit supervision strategy presented in this article,
we use an inner confidence measure evaluating the classifier
confusion degree. This measure allows the sampling of data
that they are between the classifier models of two classes, and
are hence very interesting for the classifier training. Usually,
confidence measures, like reject options, are based on system
output (membership to all classes). However, we try to eval-
uate our model quality from a very early stage of the online
learning process. As a result, rules conclusions are still rough
and unsettled, and not very representative of the system con-
fidence. Instead of using rule conclusions, which are the dis-
criminative part of our system, we base our confidence measure
on rule premises, which are the generative part of our classi-
fier. This makes it possible to detect confusion when gestures
activate different prototypes at similar levels, which means that
those samples are between the different models of our system.
We evaluate system confidence using the principles of confu-
sion reject options.

The Mahalanobis distance is used to compute the distance of
a data sample x to the prototypes C(i) (defined by their center
µ(i) and co-variance matrix Σ(i)).

dist(C(i), x) = (x − µ(i))>(Σ(i))−1(x − µ(i))> (25)

From this distances, we compute similarity measures in the
same way as prototype activation.

sim(C(i), x) =
1

1 + dist(C(i), x)
(26)

With this similarity measures, we compute system confidence
as:

con f idence =
sim f irst − simsecond

sim f irst
(27)

Where sim f irst and simsecond are the first and the second highest
similarity values. A data sample is then flagged as confusing,
and rejected, when its confidence is below a certain threshold.

The sampling of samples is subject to the error/interaction
trade-off (which is quite similar to the error/rejection trade-
off). As the threshold increases, the number of selected gestures
raises and the number of classification errors reduces. A high
threshold will yield many selections, which will reduce system
error rate, whereas a low threshold will yield only a few selec-
tions, which will reduce user interaction. There is a trade-off

between the classifier error rate and the user interaction rate.
To choose a compromise, one must define the cost of an er-

ror of classification, and the cost of a user interaction (neces-
sary or not). On the one hand, a selection will make the system
ask the user to validate or correct the recognized label. On the
other hand, an error of classification will force the user to can-
cel/undo his command and try to do it again. Our goal is to
select data that doesn’t fit well into the classifier model to im-
prove its model, but also permit to reduce classification errors.
However, we don’t want to select too many data samples and
solicit the user too often.

We did a survey among the 62 users that participated in our
testing campaign [60]. A selection was rated annoying with
an average score of 3.96, on a scale from 0 to 10, whereas a
recognition error was rated annoying with an average score of
6.71. It seems reasonable to assume that an error is twice more
annoying than a selection since an error force the user to can-
cel/undo the executed command and to retry the intended com-
mand, whereas a selection only require a validation or a correc-
tion. As a result, we will try, as much as possible, to have twice
as much selection as errors, what we can call the E2SR: 1 Error
for 2 Selection Rate. As the classifier is evolving, the sampling
method will have to evolve as well to maintain this compromise
of E2SR.

Following Section presents the IntuiSup supervisor, with its
combined implicit and explicit supervision strategies (that we
developed with the classifier confidence measure). Next sec-
tion will then present in detaids the Evolving Sampling by
Uncertainty (ESU) algorithm that maintains the desired er-
ror/interaction compromise over time.

4. The IntuiSup Supervisor

This section presents the IntuiSup supervisor and details the
online active supervision strategy we developed, combining im-
plicit and explicit supervision. The implicit supervision mech-
anism takes advantage of user next action to implicitly label the

6

A B C D

Right gesture rightly recognized

Wrong gesture Right gesture wrongly recognized

Selected gesture

Figure 3: Data partitioning as a result of the user and system cross-learning.

majority of correctly classified data, to strengthen the classifier
model. The explicit supervision mechanism makes it possible
to learn from complex data samples that are hard to recognize,
and from which it is very beneficial to learn. It uses the Evolv-
ing Sampling by Uncertainty (ESU) algorithm to trigger user
interactions using the classifier confidence measure as input.

In the context of gesture commands, users initialize the sys-
tem with a few gestures per class (three in our experimentation).
To improve gesture command recognition, the classifier learns
incrementally during its use. At the same time that the classifier
is learning, so is the user: he has to memorize which gesture is
associated with which command [4]. In this cross-learning sit-
uation, different cases can happen:

Case A The user draws the right gesture which is rightly rec-
ognized: the intended command is executed;

Case B The user makes a mistake and draws a wrong gesture;

Case C The classifier makes a mistake and recognizes a wrong
command;

Case D The supervisor select the gesture and asks the user to
confirm or correct its recognition.

When either the user or the system makes a mistake (case B
or C), the command which is executed is not the one that was
intended. The user has to cancel/undo that command and try
again to do the one he intended. According to this, data can be
divided into four categories like shown in Figure 3.

The classifier learning algorithm is a supervised algorithm,
it is hence necessary to label run-time data. The supervision
strategy is two folded: it combines implicit supervision, without
interacting with the user, and explicit supervision, that solicits
the user to obtain data true labels. Figure 4 show the online
active learning supervision process of the IntuiDoc supervisor.
The implicit and explicit supervision mechanism are detailed
below.

4.1. Implicit supervision: without user interaction

Self supervision consists of labeling run-time data with the
labels recognized by the classifier, without interacting with the
user. However, this labeling will contain mistakes each time
gestures are wrongly recognized. To avoid deteriorating the
classifier model by learning on mislabeled data, we take ad-
vantage of user next action, to learn only when he implicitly
validates the recognized label. The implicit supervision strat-
egy is a form of semi-supervised learning, that allow run-time
data labeling without soliciting the user.

New input data

Implicit
validation?

Explicit
validation?

User interaction

Labeled data
used for learning

(Case A & D)

Unlabeled data not
used for learning

(Case B & C)

yes

no no

yes

Figure 4: Online active learning supervision process.

In practice, when the user draws a gesture, it is recognized
by the classifier and the corresponding command is executed.
Two cases are then possible.

• The user cancels or undo this command, either because it
doesn’t correspond to the gesture he has drawn (classifica-
tion error, category C of Figure 3), either because he has
drawn a wrong gesture (memorization error, category B),
or just because he has changed his mind.

• The user continues his actions, which is likely to indicate
that the executed command suits his needs, he implicitly
validates the recognition (category A).

The implicit supervision is to use the recognized label, but
only when it is implicitly validated by the user (by doing an-
other command than cancel/undo). The classifier will learn
from the data samples it has correctly recognized (category A),
but it will not learn from his mistakes (category C), nor from
the user mistakes (category B), rather than risking to learn with
a wrong label. This strategy allows being sure not to deterio-
rate the classifier model, but reduces the number of data sam-
ples that can be used for the online learning. The drawback
of the implicit supervision is that it only allows learning from
correctly recognized data. Learning from incorrectly classified
data is much more interesting, but requires user interactions.

4.2. Explicit supervision: labeling by user interactions

Learning from incorrectly recognized data samples requires
user interactions to obtain the true labels of the unknown ges-
tures. It is obvious that soliciting the user after each command
would be very tedious. We must carefully select the data sam-
ples we ask the user to label: it’s an active learning problem.
To do so, the supervisor uses the ESU algorithm that we devel-
oped to select the data samples the system is the least certain of
how to classify: it’s the uncertainty sampling principle. Those
data samples aren’t well described by the classifier model, and
it will be very beneficial to learn from them. By doing so, the
evolving classifier can learn from the gestures that are complex
to recognize (category D of Figure 3), and for which it would

7

have probably made a mistake, thus reducing the error rate at
the same time.

Overall, data from categories B and C of Figure 3 isn’t used
because labels haven’t been validated, neither explicitly nor im-
plicitly. Only data from categories A (implicitly validated) and
D (explicitly validated) are used by the IntuiSup supervisor to
learn the classifier. This choice takes out a few data samples
that aren’t used for learning the classifier, but makes it possible
to be sure not to deteriorate its model by learning on potentially
mis-labeled data. As a consequence, the supervisor sampling
algorithm has a great influence on the classifier learning pro-
cess. The more data is selected, the more data is available to
train the classifier and learning from complex data is very ben-
eficial for the classifier model.

The efficiency of this IntuiSup supervisor will be demon-
strated by the experimentation presented in Section 7. Follow-
ing section details the ESU sampling method that is used by the
IntuiSup supervisor to trigger user interactions.

5. Evolving Sampling by Uncertainty (ESU)

This section present the Evolving Sampling by Uncertainty
(ESU) algorithm, which takes the classifier confidence measure
as input, and use it to sample data for the classifier learning.
The ESU algorithm makes the sampling evolve to maintain the
desired error/interaction compromise over time. The context of
customized gesture commands implies a cross-learning prob-
lem: the user has to memorize the gesture set, and the classifier
has to learn the class models. In this cross-learning situation,
we try to make user and system cooperate as best as possible,
with sampling based user interactions. As a result, we need to
make the sampling capacity change and adapt to this dynamic
environment in order to maintain the desired error/interaction
compromise.

To optimize system learning, and hence system performance,
we can tune the sampling capacity to increase data labeling, but
we need to keep in mind its impact on user interactions. It is
necessary to find a good compromise between the number of
recognition errors, and the number of user interactions. The
most simple strategy is to choose a constant sampling threshold
that optimizes the error/interaction trade-off [61][62] in a simi-
lar way than a reject option. The data samples with the highest
probability of being mis-recognized are selected, and for an of-
fline system, selected data is homogeneously distributed over
time. However, our system is evolving and will improve with
time; as a consequence, the number of selected data will de-
crease over time. In the survey we conducted, users rated errors
twice more annoying than selections (sampling and user inter-
action), which leds us to choose the E2SR compromise: 1 Error
for 2 Selections Rate. It is then necessary to make the sampling
capacity evolve to maintain this E2SR compromise, as classi-
fier performance will change with time (improve, or worsen in
case of concept drift).

The strategy that we follow is to adapt the sampling threshold
to maintain the error/interaction compromise as system learns
and the environment changes. To make the sampling capac-
ity evolve and follow system evolution, we have developed an

online algorithm that updates the sampling threshold as sys-
tem learns: the Evolving Sampling by Uncertainty (ESU) al-
gorithm.

In this Section, we describe and compare three algorithms:

• Kalman filter based algorithm,

• Automatic Multiple Threshold Learning (AMTL) algo-
rithm,

• the new ESU algorithm.

The two first are state-of-the-art algorithms that we adapted to
our online learning situation, but whose performance are lim-
ited on our problem (as we will see in Section 7). We developed
a third one specifically for this problem: the Evolving Sampling
by Uncertainty (ESU) algorithm. The ESU algorithm updates
the sampling threshold in a preventive way, which makes it
more efficient, whereas the two firsts only update the threshold
when some unrecognized data is not selected (mis-acceptation),
or when some data are selected and correctly recognized (mis-
selection).

5.1. Automatic Multiple Thresholds Learning (AMTL) Algo-
rithm

The Automatic Multiple Thresholds Learning (AMTL) algo-
rithm [63][64] is a generic algorithm to learn multiple rejection
thresholds. It is a greedy algorithm based on empiric heuris-
tics. AMTL uses both examples and counter examples to set
the threshold according to the desired error/reject compromise.

The AMTL algorithm starts with a high rejection threshold,
that rejects all learning samples. Then, it decreases the rejec-
tion threshold accepting more and more target examples, and
inevitably some counter examples. The algorithm stops when
the desired error/reject compromise is achieved on the learning
data set. AMTL isn’t an online algorithm, it requires a learning
set to optimize the threshold. It can be used in an incremen-
tal way with the use of a sliding window. However, using a
window of past data is costly in term of memory requirements.

The AMTL algorithm can easily be used to optimize the se-
lection threshold, which is similar to a reject option. The er-
ror/reject trade-off is then replaced by the error/selection trade-
off.

The main interest and advantage of the AMTL algorithm
is that it optimizes the threshold to reach the desired er-
ror/selection compromise directly. We just have to choose the
desired compromise value, the E2SR according to user survey
results for instance, and the algorithm does the optimization.

However, the AMTL algorithm only updates the thresh-
old(s) when mis-selections or a mis-acceptations happen. Mis-
selections are correctly classified examples that were selected,
whereas they would have been used by the implicit supervi-
sion strategy. Mis-acceptations are incorrectly classified exam-
ples that were accepted, and are hence not used for the classi-
fier learning whereas it would have been beneficial. Threshold
adaptation is only corrective, which lacks of reactivity in an on-
line environment.

8

5.2. Kalman Filter Based Algorithm

This algorithm uses the Kalman filter principle [65] to es-
timate the separation between correctly and incorrectly recog-
nized samples. The Kalman filter is a linear quadratic estima-
tion algorithm that produces statistically optimal estimates of
unknown variables from noisy data. In our case, we feed the
Kalman filter with all the mis-selections and mis-acceptations,
in order to estimate the separation between examples that
should be accepted and (counter) examples that should be se-
lected. The Kalman filter based algorithm starts from an initial
separation value and corrects it each time a data sample is ei-
ther mis-selected or mis-accepted. The selection threshold is
then set according to this separation to obtain the desired er-
ror/interaction compromise.

The Kalman algorithm is a two-step process. In the predic-
tion step, the variable xt representing the separation between
examples and counter examples, and its uncertainty pt, are pre-
dicted from past values xt−1 and pt−1, and where q and r are the
process and the measurement noises.

xt = xt−1 (28)
pt = pt−1 + q (29)

In the update step, predicted values are corrected with current
observation yt to obtain more accurate predictions.

kt = pt/(pt + r) (30)
xt = xt + kt ∗ (yt − xt) (31)
pt = (1 − kt) ∗ pt−1 (32)

From this separation, we set a ratio θ to obtain the threshold
yielding the desired error/interaction trade-off.

tt = θ · xt (33)

The Kalman filter based algorithm is a very efficient way of
tracking the separation between examples and counter exam-
ples from the very noisy measurements we have. The drawback
of this approach is that the threshold is updated only when the
selection process fails, i.e. when some example is either mis-
selected or mis-accepted. In other words, like for the AMTL
algorithm, we only update the threshold in a corrective manner,
not a preventive manner.

5.3. Evolving Sampling by Uncertainty (ESU) Algorithm

We designed a new algorithm to adapt the sampling to the
classifier evolution in a online way. The Evolving Sampling
by Uncertainty (ESU) algorithm adapts the selection threshold
not in a corrective manner but on a continuous preventive ba-
sis instead. We designed an indicator ζt of the system confi-
dence evolution, and we use that indicator to make the sam-
pling threshold evolve accordingly. Estimating system confi-
dence progression is done by following the confidence measure
evolution, that we estimate from the mean and standard devia-
tion changes.

The threshold is computed as follows. We estimate the mov-
ing average µt and moving standard deviation σt over the last
nb samples:

µt = µt−1 ∗
nb − 1

nb
+ yt ∗

1
nb

(34)

σt =

√
S t

t
(35)

S t = S t−1
nb − 1

nb
+ (yt − µt) ∗ (yt − µt−1)

1
nb

(36)

Where nb = max (t, nbmax) and nbmax is the maximum number
of samples taken into account. From µt and σt we compute our
system confidence indicator as:

ζt = µt − σt (37)

Then, we set a ratio θ to obtain the threshold tt yielding the
desired error/interaction compromise.

tt = θ · ζt = θ · (µt − σt) (38)

The major interest of this statistical algorithm is that it is
preventive, not corrective. It updates the selection threshold
for every data sample, even if it is a correct selection or a
correct acceptation. On the contrary, the two previous algo-
rithms (Kalman and AMTL) only update the threshold for the
data samples that aren’t correctly positioned with respect to the
threshold: a false acceptation or a false selection. The effective-
ness of the ESU method will be shown in Section 7.

The Evolving Sampling by Uncertainty (ESU) algorithm
makes it possible to efficiently update the selection threshold
to maintain the desired error/interaction compromise. It makes
the active learning sampling capacity, which is used by the Intu-
iSup supervisor, evolve with the classifier and its environment.
In addition to this evolving sampling mechanism, we created an
boosted method B-ESU that fasten system learning, both at the
beginning of system use and in case of concept drift.

6. Boosted - Evolving Sampling by Uncertainty (B-ESU)

This section presents the boosted method B-ESU we de-
signed to optimize user interaction impact and improve system
learning speed. The idea is to redistribute learning data, to con-
centrate more samples at judicious times, instead of having an
uniform distribution over time. This method makes it possible
to fasten system initial convergence, and adaptation to concept
drifts, by increasing the quantity of learning data at judicious
times, and then reducing user interactions when the learning
process has converged.

6.1. Concept Drift Adaptation with the Learning Boost

The error/interaction trade-off is quite complex in this on-
line learning situation. Selecting data that would have been
mis-recognized not only represents avoided mistakes, selected
data also represents additional learning data. Additional learn-
ing data means an opportunity to improve the system, and an

9

improved system will make fewer mistakes in the future, hence
requiring fewer selections.

The intuition of what we do is that, for the same number of
selected data, we will obtain a better system if we concentrate
those data at the beginning of the utilization of the system, be-
cause it accelerates the learning process. We thus propose a
boosting method based on system performance evolution to in-
crease the selection rate during the initial learning phase and
when concept drifts appear. This higher selection rate will in-
crease the quantity of learning data that is explicitly labeled by
the user, fasten system improvement, and finally allows reduc-
ing the interaction rate to an even lower value.

This feature make it possible to follow concept drifts,
whether gradual or abrupt, in a smooth way. The knowledge
of the system is continuously updated, but the learning boost
speed up the adaptation during concept drifts.

The idea of the learning boost concept is to adapt the selec-
tion rate to the classifier learning rate. We want to have a high
selection rate while the system is learning, to improve its per-
formance faster. Then, when system performance is better, the
selection rate can be reduced because fewer errors are made,
and the number of user interactions can then be lower.

We choose to link the learning boost, i.e. the selection thresh-
old increase, to the error rate evolution. This method permit
the automatic adaptation of the learning boost to system evolu-
tion. When there are few new classes that are easy to recognize,
the error rate decreases quickly and the learning boost rapidly
fades. On the contrary, when the new classes are numerous and
complex to recognize, the learning boost remains until system
learning converges.

In the end, when system learning has converged after the
change, the error/interaction compromise that we obtain with
this boosting method is more interesting. Fewer errors and in-
teractions will be made during the future use of the classifier.

If another concept drift happens, the error rate will rise and
the learning boost will appear again, until the novelty is learned.
The learning boost accelerate system learning speed, during
both the initial learning phase and environment changes.

6.2. Boosted Method B-ESU

In practice, the learning boost is achieved by a temporary
increase of the selection threshold which is done by adding a
boosting term.

t = tdynamic + tboost (39)

The boosting term of the selection threshold is linked to the
absolute value of the gradient of system recognition rate:

|
∂ error_rate
∂ time

| (40)

The gradient of system recognition rate is approximated as the
difference between a short term and a medium term running
average.

δ = |µk − µ2∗k | (41)

Where µk is the running average of the error rate on (approxi-
mately) the k last samples. Finally, we limit the boosting term

in order not to exceed a maximum interaction rate, to avoid
bothering users too much.

tboost = min(δ, tboost_max) (42)

In our experiments, we set k to five times the number of
classes, and and use a maximum boost giving 25% of user inter-
action. With the boosted method B-ESU, the classifier is learn-
ing faster and adapting to concept drifts quicker.

The following section presents the experimentation we con-
ducted to evaluate our approach.

7. Experimentation

This section presents the experimental validation of the Intu-
iSup supervisor for the online active supervision of an evolving
classifier. The objective is to improve system recognition per-
formance as much as possible, but without soliciting the user
too often. We validated experimentally the combination of im-
plicit and explicit supervision strategies for learning the evolv-
ing classifier. We show the effectiveness of the Evolving Sam-
pling by Uncertainty (ESU) algorithm for adapting the sam-
pling capacity, and maintain the desired error/interaction com-
promise. We also validated the efficiency of the boosted method
B-ESU to accelerate system learning speed, during both initial
learning and concept drifts.

7.1. Evaluation Database

We evaluate our approach on the ILG Data Base1[10] using
the supplied HBF49 [66] feature set.

This database contains handwritten gestures that have been
collected in an immersive environment. The users were
asked to customize and use gesture commands in a picture
browser/editor, and were not aware that their gesture were
recorded. ILGDB contains 6629 mono-stroke gestures, belong-
ing to 21 classes, that have been drawn by 38 writers. This
database is very interesting and unique for three main reasons.

First, gestures are ordered chronologically in their drawing
order. This chronological order allows seeing changes in user
writing styles with time, as the writers evolve from novice to
expert as shown figure 5. This is a very unique property among
handwritten gesture database, which is necessary to get a re-
alistic evaluation of an online system that adapts to the writer
evolution.

Second, class frequencies varies, from 5 to 17 samples per
class (per writer). The data stream of each writer is divided
in 5 phases, and for two of them classes are drawn at different
frequencies, some are even not used. This feature makes this
database even more realistic and representative of the real use
of an online classifier for gesture command recognition.

Third, for the majority of the database, gesture sets were
freely chosen by the writers themselves. That makes the ges-
tures various and very diversified, which is representative of

1Freely available at http://www.irisa.fr/intuidoc/ILGDB.html

10

Figure 5: Example of the evolution of user writing style with time, as the writer
evolve from novice to expert.

Figure 6: User defined gesture samples from ILGDB.

the real use of a customizable system. Some gesture samples
invented by ILGDB writers are presented in Figure 6.

These three reasons make this database very realistic and
unique. Moreover, it is representative of the real use of a on-
line classifier for gesture command recognition.

The supplied HBF49 [66] feature set is a unified feature rep-
resentation for universal online symbol recognition. It was
designed to cover all the aspects needed for symbol recogni-
tion with various characteristics: online, offline, mono-stroke,
multi-stroke, and in various contest: handwritten digits, math-
ematical symbols, iconic gestures, geometrical objects, archi-
tectural objects, etc. This versatility makes it very suitable for
user defined gesture commands recognition. HBF49 provides
a baseline for symbol recognition systems and also serves as a
universal benchmarking representation.

7.2. Evaluation Protocol

Drawn symbols are distributed into five phases for each
writer. Phase 0 (three symbols per class) is used for system ini-
tialization, and phases 1 to 5 (∼ 120 symbols) simulate system
use with varying class frequencies. For our experiments, we
used 20 random triplets of users (noted U, V and W) that used
the same gesture set (group 3). This protocol makes it possible
to simulate a longer use of gesture commands with two concept
drifts when writer changes (from U to V, and from V to W). We
initialize our system on phase 0 of the first writer (U0) and use
phases 1 to 3 of the three writers (U1, U2, U3, V1, V2, V3, W1,
W2 and W3, ∼ 270 symbols) to simulate the online learning of
our classifier. We tested our system performance on phase 4 of
the three writers (U4 + V4 + W4 = 63 symbols) between each
of the nine utilization/learning phases.

The error/interaction trade-off is very similar to the er-
ror/rejection trade-off. To evaluate the performance of an offline
system with a reject option, the most common measure used is
the area under the error/reject curve. However, this approach
is irrelevant with an online system, where it is not possible to
choose any operating point on the error/reject curve. For an

0 5 10 15 20

0
5

10
15

Selection Rate (%)

E
rr

or
 R

at
e

(%
)

Curve U0
Curve U1
Curve U2
Curve U3
Curve V1
Curve V2
Curve V3
Curve W1
Curve W2
Curve W3

●

●

●

●●

●●
●

●
●

Initial
 Operating

 Point

U0

U1

U2

U3

V1

V2

V3

W1
W2W3

Final
 Operating

 Point

Figure 7: Error/selection curves and operating point evolution over time.

online system, the error/reject curve is obtained for the operat-
ing point used during the online learning phase, and changing
the operating point also changes the curve! Figure 7 shows the
evolution of the error/selection curves, and their associated op-
erating points, with time.

In order to evaluate the performance of an online system
with a sampling option, we propose a new approach: the er-
ror/interaction ratio trajectory. This trajectory allows seeing
the changes of the error/interaction compromise, and evaluating
if the desired compromise is maintained over time. Addition-
ally, the final operating point enable to evaluate the final state
of the system, and compare different configuration in term of
error/interaction performance.

7.3. Implicit and Explicit Supervision
Table 1 presents the final raw error rates (including errors

among selected samples) obtained on ILGDB with the implicit
(cf. section 4.1) and explicit (cf. section 4.2) supervision strate-
gies. As expected, learning without user supervision, neither
implicit nor explicit, but using the labels proposed by the clas-
sifier itself (self supervision), deteriorates the classifier perfor-
mance: the raw error rate (including selected samples) raises
from 11.53% to 13.28%. It is better not to learn at all, than to
learn on potentially mislabeled samples that damage the classi-
fier model. The implicit supervision strategy allows a recogni-
tion performance improvement (raw error rate reduction from
11.53% to 10.15%), but not as much as the explicit strategy
(raw error rate of 7.27%). It is essential for the classifier to be
able to learn from its mistakes. Finally, the IntuiSup supervi-
sor, which combined implicit and explicit supervision, makes it
possible to improve efficiently the classifier model performance
(raw error rate of 6.52%).

Table 2 present the raw error rate (including selected sam-
ples) and user interaction rates obtained for the eventual label-
ing of the remaining data (category B and C of figure 3). The
reference strategy, without using data from category B and C,
is the above IntuiSup supervisor (raw error rate of 6.52%). Us-
ing part B and C requires an additional labeling strategy. Au-
tomatic labeling with system output doesn’t help because those

11

Table 1: Comparison of the supervision strategies on ILGDB
Supervision Strategy Error Rate (%)
No online learning 11.53

Self supervision (A+B+C+D) 13.28
Implicit supervision (A) 10.15
Explicit supervision (D) 7.27

IntuiSup supervisor (A+D) 6.52

Table 2: Additional labeling strategy cost and results
IntuiSup (A+D) + Error Rate (%) UI Rate (%)

No supervision (B+C) 6.52 7.39
Self supervision (B+C) 6.77 7.64

Explicit supervision (B+C) 5.51 16.4

4 6 8 10 12 14

2
3

4
5

6
7

8

Selection Rate (%)

E
rr

or
 R

at
e

(%
)

E2SR

Constant
Kalman
AMTL
ESU

●

●

●

●

●
●

●
●

●

●

●

Figure 8: Error/interaction ratio evolution with the different sampling evolution
algorithms, with regard to the E2SR compromise (dotted line).

data samples contains recognition errors, the error rate even rise
a little (from 6.52% to 6.77%). Explicitly asking the user to la-
bel those data samples makes it possible to reduce system error
rate from 6.77% to 5.51%, but at the cost of a lot of user in-
teractions. The user interaction rate indeed goes from 7.64%
to 16.4% (5.71% of memorization errors, 1.63% of recogni-
tion errors, 9.02% of sampling). It means going from 4.80 to
10.32 user interactions on the 63 symbols test set (115% of rel-
ative augmentation), making this slight performance improve-
ment very costly, and not worthy from the user point of view.
Finally, we don’t use data from category B and C in the online
learning process of the classifier, which represents 9% of the to-
tal data. The IntuiSup supervisor uses implicitly validated data
(category A of figure 3), and explicitly validated data (category
D) to optimize both system performance and user interactions.

7.4. Evolving Sampling by Uncertainty (ESU)
Figure 8 compares the three algorithms for the selection

threshold evolution (Kalman, AMTL and ESU), and the con-
stant threshold strategy as reference.

Even if the selection threshold stays constant, the recog-
nition system evolves and improves, which makes the er-
ror/interaction compromise change. When system performance
improves, so does average system confidence. As a result, sys-
tem interaction rate decreases faster than the error rate, and
the error/interaction compromise changes. Moreover, concept
drifts also modify the error/interaction compromise.

The objective is to maintain the desired E2SR compromise
of twice as much selections (interactions) as errors, that suits
users best (represented by the dotted diagonal on Figure 8).
The AMTL algorithm gives similar performance to the constant
threshold. The Kalman based algorithm fails to maintain the er-
ror/interaction compromise, and yield too much errors and very
few interactions. On the contrary, the ESU method is able to
follow system improvement, and adapt the selection threshold
accordingly. This algorithm globally follows the target diago-
nal, and gives a compromise of 3.96% of errors for 6.18% of
selections (interactions).

It is noteworthy that the Evolving Sampling by Uncertainty
(ESU) algorithm could follow any other given error/interaction
compromise than the E2SR (1 Error for 2 Selection Rate), like
the E3SR (1 Error for 3 Selection Rate) for instance (as shown
Figure 9).

7.5. Boosted - Evolving Sampling by Uncertainty (B-ESU)
Figure 9 shows the effects of our boosted method B-ESU, on

an evolving threshold. The boosting method increases the in-
teraction rate at the beginning and reduces it as system learns.
In the end, the error/interaction ratio obtained when using the
boosting method is more interesting. The error rate is 16%
lower (from 3.96% to 3.31%) than the one obtained without
boosting, for the same interaction rate (6.33%).

For the purpose of comparison, Figure 9 also shows the curve
obtained without boosting, but with a higher threshold and a
different error/interaction compromise: the E3SR, to get the
same final error rate (3.31%). Increasing the threshold (with-
out boosting) to get the same final error rate (3.31%), yield a

12

Table 3: Average number of user interactions per writer (on the 21 gestures of phase 4)
Test after Phase 0 1 2 3 4 5 6 7 8 9 Total

ESU 4.6 4.1 3.9 3.7 3.0 2.7 2.6 2.3 2.0 2.1 31.0
B-ESU (E2SR) 6.7 5.0 3.8 3.3 3.3 2.8 2.5 2.6 2.4 2.1 34.5
ESU (E3SR) 5.7 5.3 4.8 4.3 3.8 3.2 3.3 2.9 2.6 2.7 36.5

5 10 15 20

2
3

4
5

6
7

8

Selection Rate (%)

E
rr

or
 R

at
e

(%
)

E2SR

E3SR

● ESU (E2SR)
ESU (E3SR)
B−ESU (E2SR)

●

●

●
●

●●

●●●
●

●

U3V1

V3W1

U0
U3

V1
V3

W1

W3

3.96

3.31

6.33

Figure 9: Boosted method B-ESU impact on the error/interaction ratio evolu-
tion and final error/interaction compromise.

increase of 27% of the interaction rate: from 6.33% to 8.01%.
Overall, the boosted method B-ESU allows a performance im-
provement, in term of error rate as well as interaction rate.

We can also notice on figure 9 that the interaction rate slightly
increases at the operating points at phases V1 and W1 (shown
with black arrows on figure 9) with the boosting method,
whereas it sharply decreases without. Those two points actu-
ally corresponds to the slight concept drifts due to the changes
of writer. When the writer changes, the drawing style also
changes, which generates a slight increase of the error rate. As
a consequence, the B-ESU method increases the interaction rate
to boost system learning and fasten the adaptation to the con-
cept drift.

Table 3 presents the average number of user interactions on
the testing data set between each learning phase. The (average)
total number of solicitations on the whole experiment goes from
31.0 to 34.5 with the boosted method B-ESU (11.3% of relative
augmentation). However, this augmentation is temporary, the
number of user interactions is back at the same level at the end
of the experiment: 2.1 user interactions in average on the test
set. Slightly modifying user interactions during the beginning
of system use, and during concept drifts, enable to decrease the
error rate by 16% (from 3.96 to 3.31) at the end of the exper-
iment, and thus for the future use of the recognition system.
Comparing to a higher threshold (for the E3SR compromise),
using a lower threshold with the boosted method B-ESU makes
it possible to reduce the number of user interactions by 5.5%
(from 34.5 to 36.5) during the experiment; and allows reducing
the interaction rate by 20.8% (from 8.01 to 6.33).

8. Conclusion

Learning a classifier for the recognition of gesture commands
is an online learning situation that requires a supervision strat-
egy to label run-time data. Most of correctly recognized data
can be labeled implicitly with users next action, but it is essen-
tial to be able to learn from mis-recognized data. To do so, it is
necessary to interact with the user to be able to label complex
data and improve the classifier model efficiently. On the other
hand, constantly soliciting the user is tedious, and considerably
reduces the easiness of use of gesture commands. A compro-
mise must be chosen between the number of user interactions
and the number of recognition errors.

We have studied the impact of different supervision strate-
gies and showed the effectiveness of the IntuiSup supervisor
for the online learning of an evolving classifier of gesture com-
mands. We have seen that some data can be implicitly labeled,
to reinforce system knowledge without soliciting the user. As
it is fundamental to be able to learn from mis-recognized data
samples – with their correct labels – to improve the classifier
performance, we interact with the user to actively supervise the
classifier online learning. In particular, we use a confidence
measure from the classifier to make the sampling decision of
our active learning strategy and learn from data samples that
don’t fit the classifier model.

There is a trade-off between the numbers of errors and in-
teractions, so we conducted an user survey to choose the com-
promise of 1 Error for 2 Selections Rate (E2SR). As we are
facing an online learning situation, the error/interaction com-
promise will change with system improvement. We presented
the Evolving Sampling by Uncertainty (ESU) algorithm, based
on a statistic modeling of system evolution, that successfully
makes the sampling capacity evolve to maintain the desired er-
ror/interaction compromise.

In addition of the evolving sampling capacity, we also pre-
sented the boosted method B-ESU to fasten system learning
speed. This method increases the interaction rate at the begin-
ning of system use, and during concept drifts, to fasten system
learning process. This quicker improvement of the classifier
performance then enables to reduce the sampling rate, because
the classifier makes less mistakes, and hence to reduce user in-
teractions.

This paper has presented a novel approach for the online ac-
tive learning of gesture commands – namely the IntuiSup su-
pervisor – with three contributions: the combination of implicit
and explicit supervision strategies, the Evolving Sampling by
Uncertainty (ESU) algorithm and the boosted method B-ESU.
Our approach improves the recognition system performance on
the experimentation we conducted on the ILG Data Base.

13

References

[1] J. O. Wobbrock, M. R. Morris, A. D. Wilson, User-defined gestures for
surface computing, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, ACM, 2009, pp. 1083–1092.

[2] J. Yang, J. Xu, M. Li, D. Zhang, C. Wang, A real-time command system
based on hand gesture recognition, in: 2011 Seventh International Con-
ference on Natural Computation (ICNC), Vol. 3, 2011, pp. 1588–1592.

[3] P. Y. Li, N. Renau-Ferrer, E. Anquetil, E. Jamet, Semi-customizable Ges-
tural Commands Approach and Its Evaluation, in: 2012 International
Conference on Frontiers in Handwriting Recognition (ICFHR), 2012, pp.
473–478.

[4] P. Li, M. Bouillon, E. Anquetil, G. Richard, User and System Cross-
Learning of Gesture Commands on Pen-Based Devices, in: Proceeding of
the 14th International Conference on Human-Computer Interaction (IN-
TERACT), Vol. 2, 2013, pp. 337–355.

[5] M. Bouillon, P. Li, E. Anquetil, G. Richard, Using Confusion Reject to
Improve (User and) System (Cross) Learning of Gesture Commands, in:
Proceedings of the 12th International Conference on Document Analysis
and Recognition (ICDAR), 2013, pp. 1017–1021.

[6] P. Angelov, An approach for fuzzy rule-base adaptation using on-line
clustering, International Journal of Approximate Reasoning 35 (3) (2004)
275–289.

[7] P. Angelov, X. Zhou, Evolving Fuzzy-Rule-Based Classifiers From Data
Streams, IEEE Transactions on Fuzzy Systems 16 (6) (2008) 1462–1475.

[8] J. O. Wobbrock, A. D. Wilson, Y. Li, Gestures without libraries, toolkits
or training: a $1 recognizer for user interface prototypes, in: Proceed-
ings of the 20th annual ACM symposium on User interface software and
technology, UIST ’07, ACM, 2007, pp. 159–168.

[9] A. Almaksour, E. Anquetil, Improving premise structure in evolving
Takagi-Sugeno neuro-fuzzy classifiers, Evolving Systems 2 (1) (2011)
25–33.

[10] N. Renau-Ferrer, P. Li, A. Delaye, E. Anquetil, The ILGDB database of
realistic pen-based gestural commands, in: Proceeding of the 21st Inter-
national Conference on Pattern Recognition, 2012, pp. 3741–3744.

[11] J. Gama, A survey on learning from data streams: current and future
trends, Progress in Artificial Intelligence 1 (1) (2012) 45–55.

[12] C. C. Aggarwal, J. Han, J. Wang, P. S. Yu, On demand classification of
data streams, in: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, 2004, pp.
503–508.

[13] M. Last, Online classification of nonstationary data streams, Intelligent
Data Analysis 6 (2) (2002) 129–147.

[14] A. Bifet, R. Gavalda, Learning from Time-Changing Data with Adaptive
Windowing., in: SDM, Vol. 7, SIAM, 2007, p. 2007.

[15] M. Markou, S. Singh, Novelty detection: a review—part 1: statistical
approaches, Signal processing 83 (12) (2003) 2481–2497.

[16] G. Widmer, M. Kubat, Learning in the presence of concept drift and hid-
den contexts, Machine Learning 23 (1) (1996) 69–101.

[17] D. W. Aha, D. Kibler, M. K. Albert, Instance-based learning algorithms,
Machine learning 6 (1) (1991) 37–66.

[18] T. Kohonen, Learning vector quantization, Springer, 1997.
[19] C. P. Lim, R. F. Harrison, Online pattern classification with multiple neu-

ral network systems: an experimental study, Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on 33 (2)
(2003) 235–247.

[20] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams,
in: Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2001, pp. 97–106.

[21] S. Hashemi, Y. Yang, Flexible decision tree for data stream classification
in the presence of concept change, noise and missing values, Data Mining
and Knowledge Discovery 19 (1) (2009) 95–131.

[22] A. Fern, R. Givan, Online ensemble learning: An empirical study, Ma-
chine Learning 53 (1-2) (2003) 71–109.

[23] R. Elwell, R. Polikar, Incremental learning of concept drift in nonstation-
ary environments, Neural Networks, IEEE Transactions on 22 (10) (2011)
1517–1531.

[24] L. I. Kuncheva, Classifier ensembles for changing environments, in: Pro-
ceedings of the 5th International Workshop on Multiple Classifier Sys-
tems, Springer, 2004, pp. 1–15.

[25] N. C. Oza, Online bagging and boosting, in: Systems, man and cyber-

netics, 2005 IEEE international conference on, Vol. 3, IEEE, 2005, pp.
2340–2345.

[26] B. Settles, Active Learning Literature Survey, Computer Sciences Tech-
nical Report 1648, University of Wisconsin–Madison (2010).

[27] D. Angluin, Queries and concept learning, Machine learning 2 (4) (1988)
319–342.

[28] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, H.-J. Zhang, Two-Dimensional Ac-
tive Learning for image classification, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2008. CVPR 2008, 2008, pp. 1–8.

[29] D. Cohn, L. Atlas, R. Ladner, Improving generalization with active learn-
ing, Machine learning 15 (2) (1994) 201–221.

[30] D. D. Lewis, W. A. Gale, A sequential algorithm for training text classi-
fiers, in: Proceedings of the 17th annual international ACM SIGIR con-
ference on Research and development in information retrieval, Springer-
Verlag New York, Inc., 1994, pp. 3–12.

[31] A. Fujii, T. Tokunaga, K. Inui, H. Tanaka, Selective sampling for
example-based word sense disambiguation, Computational Linguistics
24 (4) (1998) 573–597.

[32] T. Scheffer, C. Decomain, S. Wrobel, Active hidden markov models
for information extraction, in: Advances in Intelligent Data Analysis,
Springer, 2001, pp. 309–318.

[33] H. S. Seung, M. Opper, H. Sompolinsky, Query by committee, in: Pro-
ceedings of the fifth annual workshop on Computational learning theory,
ACM, 1992, pp. 287–294.

[34] B. Settles, M. Craven, An analysis of active learning strategies for se-
quence labeling tasks, in: Proceedings of the conference on empirical
methods in natural language processing, Association for Computational
Linguistics, 2008, pp. 1070–1079.

[35] N. Roy, A. McCallum, Toward optimal active learning through monte
carlo estimation of error reduction, ICML, Williamstown (2001) 441–
448.

[36] S. Geman, E. Bienenstock, R. Doursat, Neural networks and the
bias/variance dilemma, Neural computation 4 (1) (1992) 1–58.

[37] A. Almaksour, E. Anquetil, ILClass: Error-driven antecedent learning for
evolving Takagi-Sugeno classification systems, Applied Soft Computing
19 (2014) 419–429.

[38] T. Takagi, M. Sugeno, Fuzzy Identification of Systems and Its Applica-
tions to Modeling and Control, Systems, Man, and Cybernetics, IEEE
Transactions on 15 (1) (1985) 116–132.

[39] P. Angelov, Evolving Takagi-Sugeno fuzzy systems from data streams
(eTS+)., in: P. Angelov, D. Filev, N. Kasabov (Eds.), Evolving intelligent
systems : methodology and applications, IEEE Press series in Compu-
tational Intelligence, John Wiley and Sons and IEEE Press, 2010, pp.
21–50.

[40] P. Angelov, R. Yager, A simple fuzzy rule-based system through vector
membership and kernel-based granulation, in: 2010 5th IEEE Interna-
tional Conference Intelligent Systems, IEEE, 2010, pp. 349–354.

[41] E. Lughofer, P. Angelov, Handling drifts and shifts in on-line data streams
with evolving fuzzy systems, Applied Soft Computing 11 (2) (2011)
2057–2068.

[42] N. K. Kasabov, Q. Song, DENFIS: dynamic evolving neural-fuzzy infer-
ence system and its application for time-series prediction, IEEE Transac-
tions on fuzzy systems 10 (2) (2002) 144–154.

[43] P. Angelov, D. Filev, Simpl_ets: a simplified method for learning evolv-
ing Takagi-Sugeno fuzzy models, in: The 14th IEEE International Con-
ference on Fuzzy Systems, 2005. FUZZ’05., IEEE, 2005, pp. 1068–1073.

[44] E. D. Lughofer, FLEXFIS: A Robust Incremental Learning Approach for
Evolving Takagi-Sugeno Fuzzy Models, Fuzzy Systems, IEEE Transac-
tions on 16 (6) (2008) 1393–1410.

[45] E. Lughofer, C. Cernuda, S. Kindermann, M. Pratama, Generalized smart
evolving fuzzy systems, Evolving Systems 6 (4) (2015) 269–292.

[46] P. Angelov, R. Yager, A new type of simplified fuzzy rule-based system,
International Journal of General Systems 41 (2) (2012) 163–185.

[47] M. Pratama, S. G. Anavatti, E. Lughofer, GENEFIS: toward an effective
localist network, IEEE Transactions on Fuzzy Systems 22 (3) (2014) 547–
562.

[48] M. Pratama, S. G. Anavatti, P. P. Angelov, E. Lughofer, PANFIS: a novel
incremental learning machine, IEEE Transactions on Neural Networks
and Learning Systems 25 (1) (2014) 55–68.

[49] M. Pratama, S. G. Anavatti, M. Joo, E. D. Lughofer, pClass: an effective
classifier for streaming examples, IEEE Transactions on Fuzzy Systems

14

23 (2) (2015) 369–386.
[50] M. Pratama, J. Lu, G. Zhang, Evolving type-2 fuzzy classifier, IEEE

Transactions on Fuzzy Systems 24 (3) (2016) 574–589.
[51] M. Pratama, J. Lu, E. Lughofer, G. Zhang, S. Anavatti, Scaffolding type-2

classifier for incremental learning under concept drifts, Neurocomputing
191 (2016) 304–329.

[52] E. Lughofer, Single-pass active learning with conflict and ignorance,
Evolving Systems 3 (4) (2012) 251–271.

[53] M. Pratama, S. G. Anavatti, J. Lu, Recurrent Classifier Based on an Incre-
mental Metacognitive-Based Scaffolding Algorithm, IEEE Transactions
on Fuzzy Systems 23 (6) (2015) 2048–2066.

[54] M. Pratama, J. Lu, S. Anavatti, E. Lughofer, C.-P. Lim, An incremental
meta-cognitive-based scaffolding fuzzy neural network, Neurocomputing
171 (2016) 89–105.

[55] E. Lughofer, E. Weigl, W. Heidl, C. Eitzinger, T. Radauer, Recognizing
input space and target concept drifts in data streams with scarcely labeled
and unlabelled instances, Information Sciences 355 (2016) 127–151.

[56] E. Lughofer, Evolving fuzzy models: incremental learning, interpretabil-
ity, and stability issues, applications, VDM Verlag Dr. Müller, 2008.

[57] P. Angelov, Autonomous learning systems: from data streams to knowl-
edge in real-time, John Wiley & Sons, 2012.

[58] J.-S. Jang, C.-T. Sun, Functional equivalence between radial basis func-
tion networks and fuzzy inference systems, Neural Networks, IEEE
Transactions on 4 (1) (1993) 156–159.

[59] R. R. Yager, D. P. Fileu, Learning of fuzzy rules by mountain clustering,
in: Optical Tools for Manufacturing and Advanced Automation, Interna-
tional Society for Optics and Photonics, 1993, pp. 246–254.

[60] M. Bouillon, E. Anquetil, P. Li, G. Richard, User Interaction Optimiza-
tion for an Evolving Classifier of Handwritten Gesture Commands, in:
Proceedings of the 14th International Conference on Frontiers in Hand-
writing Recognition (ICFHR), 2014, pp. 720–725.

[61] N. Gorski, Optimizing error-reject trade off in recognition systems, in:
Document Analysis and Recognition, 1997., Proceedings of the Fourth
International Conference on, Vol. 2, IEEE, 1997, pp. 1092–1096.

[62] L. K. Hansen, C. Liisberg, P. Salamon, The error-reject tradeoff, Open
Systems & Information Dynamics 4 (2) (1997) 159–184.

[63] H. Mouchère, E. Anquetil, A Unified Strategy to Deal with Different Na-
tures of Reject, in: 18th International Conference on Pattern Recognition
(ICPR), Vol. 2, 2006, pp. 792 –795.

[64] H. Mouchère, E. Anquetil, Generalization capacity of handwritten outlier
symbols rejection with neural network, in: Tenth International Workshop
on Frontiers in Handwriting Recognition, Suvisoft, 2006.

[65] R. J. Meinhold, N. D. Singpurwalla, Understanding the Kalman filter, The
American Statistician 37 (2) (1983) 123–127.

[66] A. Delaye, E. Anquetil, HBF49 feature set: A first unified baseline for
online symbol recognition, Pattern Recognition 46 (1) (2013) 117–130.

15

