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Abstract

In this paper, a new denoising algorithm to deal with the additive white Gaussian noise model is
described. In the line of work of the Non-Local means approach, we propose an adaptive estimator
based on the weighted average of observations taken in a neighborhood with weights depending on
the similarity of local patches. The idea is to compute adaptive weights that best minimize an upper
bound of the pointwise L2 risk. In the framework of adaptive estimation, we show that the “oracle”
weights are optimal if we consider triangular kernels instead of the commonly-used Gaussian kernel.
Furthermore, we propose a way to automatically choose the spatially varying smoothing parameter
for adaptive denoising. Under conventional minimal regularity conditions, the obtained estimator
converges at the usual optimal rate. The implementation of the proposed algorithm is also straight-
forward and the simulations show that our algorithm improves significantly the classical NL-means
and is competitive when compared to the more sophisticated NL-means filters both in terms of
PSNR values and visual quality.

Keywords : image denoising, image patches, nonparametric estimation, pointwise L2 risk, optimi-
zation.

1 Introduction

Several mathematical frameworks have been proposed to solve the image denoising problem
including partial derivative equations [1], frequency-based methods [2], Markov Random Fields
methods [3], locally adaptive kernel-based methods [4] and sparse representation [5, 6]. The goal
is to estimate an image assumed to be corrupted with additive white Gaussian (WGN) noise. The
white Gaussian noise is generally considered as a good approximation of source of corruptions in
many real situations [7]. Formally, we consider

v(x) = f(x) + ε(x), x ∈ Ω (1)

where Ω is a uniform N ×N grid of pixels on the unit square, v = (v (x))x∈Ω is the observed image
brightness, f : Ω ⊂ R2 → [0, fmax] is an unknown target regression function, fmax is the maximum
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intensity value in the image f , and ε = (ε (x))x∈Ω are independent and identically distributed
Gaussian random variables with mean 0 and standard deviation σ > 0.

In the last decade, the state-of-the-art results have been considerably improved by considering
patches in the case of Gaussian noise removal. The theoretical limits of denoising algorithms are at
present more frequently discussed in the literature [8, 9, 10] mainly because the most competitive
algorithms including BM3D [11], LSSC [6], EPLL [12], NL-Bayes [13], PEWA [14], PLOW [15],
S-PLE [16], produce surprisingly similar PSNR values. The most famous BM3D algorithm typically
combines clustering of noisy patches, DCT-based transform and shrinkage operation to achieve
the current state-of-the-art results [11]. It is worth noting that the aforementioned algorithms are
mostly inspired from the N(on) L(ocal)-means filter [7]. The basic idea of NL-means is to estimate
the unknown image f(x0) at location x0 ∈ Ω by a weighted average of observations in the noisy
input image defined as :

f̂(x0) =
∑

x∈Uh(x0)

w(x, x0)v(x) subject to w(x, x0) ≥ 0 and
∑
x∈Ω

w(x, x0) = 1, (2)

where Uh(x0) ⊂ Ω is the search window which can be the whole image [7]. The choice of the non-
negative weights w = (w (x, x0))x∈Ω is based essentially on two criteria : a local criterion so that the
weight w(x, x0) is a decreasing function of the spatial distance of the pixel x to the current pixel x0,
and a non-local criterion which gives more importance to pixel x when the brightness v(x) is close
to v(x0) at pixel x0. Instead of considering pointwise brightness [17, 18, 19], an important feature
of NL-means consists in attaching small square regions (or patches) to each pixel and comparing
patches. In general, image patches are viewed as pictorial elements able to take into account semi-
local spatial contexts in the 2D image. The weights are chosen in the family of Gaussian kernels
since they usually produce the best denoising results in experiments.

In the continuity of [7], several filters with data-dependent weights have been studied in the
statistical framework, among which we mention [20, 21, 7, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 19, 36, 37, 38]. In [23, 26], the authors analysed the bias-variance trade-off in the NL-
means framework to select an optimal neighborhood ; a sequence of increasing neighborhoods and
a discrete setting has been proposed to minimize the mean square error (MSE) of the estimator. In
[24] [27], [30], [34], [39], the authors focused on the selection of of the global bandwidth parameter.
Besides, Stein’s Unbiased Risk Estimator (SURE) has recently been investigated for selecting the
global [30] and local [40] smoothing parameters of the NL-means. In most of the aforementioned
papers, it is established that the bandwidth if a function of the noise variance. Note that, contrary
to [26], it is recommended in [40] to adapt the smoothing parameter rather than the search window
size. In all these papers, the starting point is the definition of NL-means (exponential form). Our
starting point is different since our objective is to derive a filter (2) by minimizing a tight bound of
the MSE of the estimator f̂(x0) at each location x0 ∈ Ω defined as :

R(f̂(x0)) = E(f̂(x0)− f(x0))2, (3)

with respect to weights w under the constraints w(x, x0) ≥ 0 and
∑

x∈Ωw(x, x0) = 1. As a result
we obtain an explicit formulation of the optimal weights w∗ depending on the unknown function f .
In order to get a computable estimator, we approximate w∗ by some adaptive weights ŵ based on
patches from the noisy image v. We carefully investigated the calibration of the distance between
patches and a convergence analysis is provided. We also establish a formal equation that relates the
smoothing parameter to the noise variance. Finally, we obtain the so-called Optimal Weights Filter
(OWF) for which the smoothing parameter is locally computed. The corresponding algorithm is
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straightforward to implement and produces competitive results when compared to several variants of
NL-means [23, 26, 41]. With the proposed weights optimization approach the smoothing parameter
is defined adaptively for every search window. The search window can be very large since the weights
selects the relevant data points for averaging. In practical imaging, we only need to adjust the patch
size. Finally, the proposed OWF procedure is shown to be more robust if we consider large patch
sizes (reduction of mottling effects) combined with an adaptive choice of the smoothing parameter
depending on the image contents and weights with compact support. In that sense, we confirm the
previous analysis presented in [40].

In the last part of the paper, we address the problem of convergence of the estimator to the true
image in the line of work of [7, 23, 26] and [42]. Here, we mention that the NL-means was interpreted
as a special case of the Exponential Weighted Aggregation (EWA) procedure that achieves the
optimal average risk [43, 35, 14]. Related optimization problems for nonparametric signal and density
recovering have been proposed earlier in [44, 45, 46, 47, 48]. In these papers the weights are optimized
over a given class of regular functions and thus depend only on some parameters of the class. In
[10, 49], the authors analysed the performance for a specific class of functions (images with sharp
edges). Our second contribution is then to find the optimal weights depending on the image f
at hand, which implies that OWF automatically attains the optimal rate of convergence for each
particular image f under some regularity conditions on f . Results of this type are related to the
“oracle” concept developed by Donoho & Johnstone [50].

The remainder of the paper is organized as follows. Our new estimator based on the optimization
of weights is presented in Section 2. We give an implementation of the estimator and a procedure
to select automatically the spatially varying bandwidth. The statistical and theoretical properties
are presented in Section 3.1 where we give the rate of convergence of the constructed estimators.
In Section 4, we present our simulation results and demonstrate the potential of the algorithm on
artificially noisy images and real images.

Notations. The Euclidean norm of a vector z = (z1, · · · zd)T ∈ Rd is denoted by ‖z‖2 =
√∑d

i=1 z
2
i

and the supremum norm of z is denoted by ‖z‖∞ = sup1≤i≤d |zi|. The positive part of a real number
z is denoted by [z]+ : [z]+ = z if z ≥ 0 and 0 otherwise.

Define a uniform N ×N -grid Ω of pixels on the unit square as

Ω =

{
1

N
,

2

N
, · · · , N − 1

N
, 1

}2

. (4)

Each element x of the grid Ω is a pixel and card(Ω) = N2 = n. To deal with the boundary of the
image we mirror the image and the set Ω outside the image limits, that is we extend the image
symmetrically with respect to the border and the corners. The extended domain of the image is
denoted by Ω. For any pixel x0 ∈ Ω and a given h > 0 assumed to be fixed in the following, the
square window of pixels

Uh(x0) =
{
x ∈ Ω : ‖x− x0‖∞ ≤ h

}
(5)

is the search window Uh(x0) ⊂ Ω centered at pixel x0. We choose h as a multiple of 1
N (i.e. h = k

N
for some k ∈ {1, 2, · · · , N}). We denote M the number of pixels falling in the square search window
Uh(x0) :

M = card(Uh(x0)) = (2Nh+ 1)2. (6)

The width h of the search window Uh(x0) plays an important role in the NL-means.
For any pixel x ∈ Uh(x0) a square patch v(x) = (v(y))y∈V (x) of size

m = card(V (x)) = (2r + 1)2 (7)
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(r > 0 is an integer) and width η = r
N , is formed by the noisy data v(y) observed at locations y in

the square window V (x) ⊂ Ω centered at pixel x :

v(x) := (v(y), y ∈ V (x)) , y = x+ τ, τ ∈ T =
{
− r

N
, · · · ,+ r

N

}2
. (8)

Without loss of generality, isotropic circular patches could be considered as well.

2 Statistical framework and optimal weights filter

For any pixel x0 ∈ Ω, consider a family of weighted estimates f̂(x0) of the form

f̂(x0) =
∑

x∈Uh(x0)

w(x, x0)v(x) subject to w(x, x0) ≥ 0,
∑

x∈Uh(x0)

w(x, x0) = 1, (9)

where the weights w(x, x0) are non-random. The usual “bias-variance” decomposition of the point-
wise L2 risk of this family of estimators has the following form

E
(
f̂(x0)− f(x0)

)2
= Bias2(f̂(x0)) + Var(f̂(x0)), (10)

with

Bias(f̂(x0)) := E
(
f̂(x0)− f(x0)

)
=

∑
x∈Uh(x0)

w(x, x0)E((v(x)− f(x0)) (11)

=
∑

x∈Uh(x0)

w(x, x0)(f(x)− f(x0)),

Var(f̂(x0)) := E
(
f̂(x0)− E

(
f̂(x0)

))2
= E

 ∑
x∈Uh(x0)

w(x, x0)(v(x)− f(x))

2

(12)

= σ2
∑

x∈Uh(x0)

w(x, x0)2.

The decomposition (10) is commonly used to construct asymptotically minimax estimators over
some given classes of functions in the nonparametric function estimation (see [44]). With our ap-
proach the bias term is bounded in terms of the unknown function f itself. As a result we obtain
some “oracle” weights w adapted to the unknown function f at hand, which will be estimated further
using noisy patches from the input image v.

2.1 Oracle weights

First, we shall address the problem of determining the oracle weights.
From the decomposition (10), we easily obtain the following upper bound :

E
(
f̂(x0)− f(x0)

)2
≤

 ∑
x∈Uh(x0)

w(x, x0)|f(x)− f(x0)|

2

+ σ2
∑

x∈Uh(x0)

w(x, x0)2. (13)
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In what follows, we shall minimize the upper bound in (13) instead of the expectation in the left hand
side. There are mainly two reasons for this. First, the right hand side of (13) is much easier to deal
with and the solution is surprisingly explicit and simple as demonstrated in this section (triangular
kernel with adaptive bandwidth). Second, the simulation results that we present in Table 1 show
that the “oracle” filter coming from the optimization of the right hand side of (13) is able to produce
excellent results with very high PSNR values.

Replacing the distance |f(x)−f(x0)| by an arbitrary non-negative function φ on Uh(x0)×Uh(x0)
with φ(x0, x0) = 0, we consider the more general objective functional

Jφ(w) :=

 ∑
x∈Uh(x0)

w(x, x0)φ(x, x0)

2

+ σ2
∑

x∈Uh(x0)

w(x, x0)2, (14)

where w is the vector whose components are w(x, x0), x ∈ Uh(x0).

Theorem 2.1. Assume that φ is a non-negative function on Uh(x0)×Uh(x0) satisfying φ(x0, x0) =
0, not identically 0. The unique closed-form solution of

min
w
Jφ(w) subject to w(x, x0) ≥ 0 and

∑
x∈Uh(x0)

w(x, x0) = 1 (15)

is given by

w(x, x0) =
K4

(
φ(x,x0)
a(x0)

)
∑

y∈Uh(x0)

K4

(
φ(y,x0)
a(x0)

) , x ∈ Uh (x0) , (16)

where K4(z) := [1 − |z|]+, z ∈ R, is the triangular kernel and the spatially varying bandwidth
a(x0) = ah(x0) > 0 is the unique solution on (0,∞) of the equation

Hφ(a(x0)) :=
∑

x∈Uh(x0)

φ(x, x0)[a(x0)− φ(x, x0)]+ = σ2. (17)

Proof : see Appendix A.1 �

Theorem 2.1 (see (17)) establishes a formal relationship between the noise variance σ2 and the
variable bandwidth a(x0) which plays a central role in most of smoothing kernel methods for image
denoising [20, 7, 23, 26, 24, 25, 30, 40, 29, 34, 35, 36]. A computational procedure will be presented
in Section 2.3 to determine the variable bandwidth at each spatial location.

2.2 Patch-based representation and optimal weights filter

Using the weights (16) which are obtained as optimal for the problem (15), we define the following
oracle filter :

f∗h(x0) :=

∑
x∈Uh(x0)

K4

(
φ(x,x0)
a(x0)

)
v(x)

∑
y∈Uh(x0)

K4

(
φ(x,x0)
a(x0)

) , x ∈ Uh(x0), (18)

where φ(x, x0) = |f(x)− f(x0)|, a(x0) = ah(x0) is the solution of (17) and h > 0.
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Let us briefly explain an important effect of adaptivity of the oracle filter, which also holds true
for its computable version. Note that f∗h(x0) is actually a bilateral filter, which has two bandwidths
parameters h and a(x0) = ah(x0). When the bandwidth h is fixed the bandwidth a(x0) is determi-
ned automatically as the solution of the equation (17). Accordingly, in what follows, we omit the
subscript h for simplicity but we write a(x0) = ah(x0) when it is necessary to indicate the depen-
dence on h. Note also that the number of pixels used in the estimation may be considerably less
that the cardinality of the set Uh(x0), which is explained by the fact that some weights can be equal
to zero : this happens when φ(x, x0) > a(x0). The adaptive neighborhood corresponding to positive
weights is inside the search window and its geometry is entirely determined by the values φ(x, x0)
for x ∈ Uh(x0). In this sense our oracle estimator has an adaptive window of varying geometry.
In simulations we shall choose h large so that the oracle filter f∗h(x0) has practically an automatic
bandwidth.

The oracle filter (18) is non computable from the noisy image, since the variation |f(x)− f(x0)|
depends on the true image f . To derive a computable estimator, we have to replace the unknown
variation |f(x)− f(x0)| by a quantity which can be computed from the noisy image v. To this end,
let us consider the Gaussian noise model (1) and write :

v(x)− v(x0) = f(x)− f(x0) + ε(x)− ε(x0). (19)

It follows that
|f(x)− f(x0)|2 = E(v(x)− v(x0))2 − 2σ2, ∀x 6= x0. (20)

Consider first the following approximation :

|f(x)− f(x0)|2 ≈ ‖v(x)− v(x0)‖2K0,2 − 2σ2 (21)

with

‖v(x)− v(x0)‖2K0,2 =
∑
τ∈T

K0(τ)(v(x+ τ)− v(x0 + τ))2, (22)

where K0(·) is a normalized kernel such that
∑

y∈T K0(y) = 1, which is generally used to take into
account the distance between the central pixel and other pixels in the patch. If we choose K0 to be
the rectangular kernel, we obtain

|f(x)− f(x0)|2 ≈ 1

m
‖v(x)− v(x0)‖22 − 2σ2. (23)

This approximation based on the distance between two patches v(x) and v(x0) fulfills the patch
regularity assumption (“similar patches have similar central pixels”) discussed in [40]. Nevertheless,
while the approximation (23) appears natural, it seems unsuitable for use with the triangular kernel
K4 under consideration. Our data driven substitute is not based on a direct approximation of the
variation |f(x)− f(x0)|, but rather on a quantity which is basically bounded by |f(x)− f(x0)|. We
define a substitute for φ(x, x0) as follows :

φv(x, x0) =
[
‖v(x)− v(x0)‖K0,2 −

√
2σ
]

+
. (24)

With this choice, φv(x, x0) = 0 if the distance |v(x)−v(x0)‖K0,2 is smaller than
√

2σ. Under suitable
conditions, in Theorem 3.3 we show that φv(x, x0) satisfies

0 ≤ φv(x, x0) ≤ α0|f(x)− f(x0)|+ δn, (25)
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Figure 1 – Plot of the kernel κ0.

where α0 > 0 is a constant and δn is a small error. A formal ground for using the approximation
(24) is given by Theorem 3.2 in Section 3.1, where we show that when φ(x, x0) admits error-in mea-
surements of type (25) the rate of convergence of the oracle estimator remains the same. In [51] the
authors have proposed the following weight w(x, x0) = exp(−max(|v(x)− v(x0)‖2K0,2

− 2σ2, 0)/h2)
which are similar to ours.

Using the approximation (24) we can now define the optimal weights filter (OWF) as follows :

f̂(x0) = f̂η,h(x0) :=

∑
x∈Uh(x0)

K4

(
φv(x,x0)
a(x0)

)
v(x)

∑
y∈Uh(x0)

K4

(
φv(y,x0)
a(x0)

) , x ∈ Uh(x0), (26)

where a(x0) is defined as the solution of the equation (17) with φ(x, x0) = φv(x, x0).
Obviously the patch sizem = (2Nη+1)2 and the search window sizeM = (2Nh+1)2 are the pa-

rameters of f̂(x0). In the sequel, to compute φv(x, x0), we use the kernelK0(τ) = κ0(τ)/
∑

τ∈T κ0(τ)
for τ ∈ T , with κ0 defined as follows :

κ0 (τ) =

r∑
k=rτ

1

(2k + 1)2
, τ ∈ T , (27)

where rτ = max{1, ‖τ‖∞N} and r is such that m = (2r + 1)2 (see (7)). The kernel κ0 has the
advantage that it decreases not too rapidly as ‖τ‖∞ increases (see Figure 1), so that the contribution
of the difference |v(x0 + τ)−v(x+ τ)| in the distance ‖v(x)−v(x0)‖κ0,2 also decreases slowly. This
kernel was used in the original implementation (“Matlab” version) of the NL-means algorithm [7].
Note that there is no theory to select a particular kernel. Consequently, we evaluated several compact
support kernels and it turns out that the proposed κ0 produced the best PSNR values.

We have seen that the weights in (26) are determined by the triangular kernel K4 appearing in
Theorem 2.1. Due to the form of φv in (24), as function of the distance d(x, x0) = ‖v(x)−v(x0)‖K0,2,
the weights in (26) can also be expressed using the trapezoidal kernel defined as KT (d(x, x0)) =

K4

(
[d(x,x0)−

√
2σ]+

a(x0)

)
= K4

(
φv(x,x0)
a(x0)

)
.

Another important issue in the non-local means filter is the selection of of the global bandwidth
parameter. This problem has already been addressed in [23], [27], [30], [34], [39]. In [40], the au-
thors focused also on the original definition of NL-means but they proposed a SURE method to
automatically select a spatially-varying smoothing parameter. In general, the starting point of all
the aforementioned papers is the the definition of NL-means with exponential weights.
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In our model the bandwidth a(x0) > 0 is estimated by the solution â(x0) of the equation

Hφv (â(x0)) =
∑

x∈Uh(x0)

φv(x, x0) [â(x0)− φv(x, x0)]+ = σ2. (28)

As in [40], by adapting the smoothing parameter or bandwidth a(x0) to the spatial location, the
choice of the search window Uh(x0) becomes not crucial. Actually, we set the size of Uh(x0) to a
large value in practice and the unique free parameter of the algorithm is the patch size m. A fast
procedure for computing â(x0) is presented in Section 2.3.1 where we replace φv(x, x0) and â(x0)
by φ(x, x0) and a(x0) respectively. The corresponding algorithm is given in Section 2.3.2.

2.3 Implementation of OWF and computational issues

In this section we propose an iterative procedure to estimate the spatially varying smoothing
parameter a from (28) (see Subsection 2.3.1) and a practical algorithm to compute OWF (see
Subsection 2.3.2).

2.3.1 Adaptive estimation of smoothing parameter

According to Theorem 2.1 we choose the bandwidth a(x0) as the solution of the equation to
(17). Below we propose a practical rule to detect the value of a(x0).

First, we sort the set {φ(xi, x0) |xi ∈ Uh(x0)} in the ascending order, that is 0 = φ(x0, x0) ≤
φ(x1, x0) ≤ · · · ≤ φ(xM−1, x0), where M = Card(Uh(x0)). Expression (17) can be then rewritten as

Hφ(a(x0)) :=

M−1∑
i=0

φ(xi, x0)[a(x0)− φ(xi, x0)]+ = σ2. (29)

Let

aj(x0) =

σ2 +
j∑
i=0

φ2(xi, x0)

j∑
i=0

φ(xi, x0)

, j = 0, . . . ,M − 1,

with the convention a0(x0) = +∞. Then we have :

Theorem 2.2. The solution a(x0) > 0 of (29) can be expressed as a(x0) = aj∗(x0) where j∗ is the
unique integer j ∈ {0, · · · ,M − 1} such that :

j∗ = max{0 ≤ j ≤M − 1 : aj(x0) ≥ φ(xj , x0)}. (30)

Proof : Denote φ(xM , x0) = +∞. Since function Hφ(a(x0)) is strictly increasing on (0,+∞) with
Hφ(0) = 0 and Hφ(+∞) = +∞, equation (29) admits a unique solution a(x0) on (0,+∞), which
must be located in some interval [φ(x̄, x0), φ(x̄+1, x0)), where 0 ≤ ̄ ≤M − 1. Hence (29) becomes

̄∑
i=0

φ(xi, x0)(a(x0)− φ(xi, x0)) = σ2, (31)
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where φ(x̄, x0) ≤ a(x0) < φ(x̄+1, x0). From (31), it follows that

a(x0) =

σ2 +
̄∑
i=0

φ2(xi, x0)

̄∑
i=0

φ(xi, x0)

, φ(x̄, x0) ≤ a(x0) < φ(x̄+1, x0). (32)

We now show that ̄ = j∗ with j∗ defined by (30), so that a(x0) = a̄(x0) = aj∗(x0). Accordingly,
it is sufficient to verify that a̄(x0) ≥ φ(x̄, x0) and aj(x0) < φ(xj , x0) if ̄ < j ≤ M − 1. We have
already seen that a̄(x0) ≥ φ(x̄, x0) ; if ̄ < j ≤ M − 1, then a̄(x0) < φ(x̄+1, x0) ≤ φ(xj , x0), so
that

aj(x0) =

σ2 +
̄∑
i=0

φ2(xi, x0) +
j∑

i=̄+1
φ2(xi, x0)

j∑
i=0

φ(xi, x0)

=

a̄(x0)
̄∑
i=0

φ(xi, x0) +
j∑

i=̄+1
φ2(xi, x0)

j∑
i=0

φ(xi, x0)

<

φ(xj , x0)
̄∑
i=0

φ(xi, x0) +
j∑

i=̄+1
φ(xj , x0)φ(xi, x0)

j∑
i=0

φ(xi, x0)

= φ(xj , x0).

We finally prove that if 0 ≤ j < M − 1 and aj(x0) < φ(xj , x0), then aj+1(x0) < φ(xj+1, x0),
so that j∗ = max0≤j≤M−1{aj(x0) ≥ φ(xj , x0)} is the unique integer j ∈ {0, · · · ,M − 1} such that
aj(x0) ≥ φ(xj , x0) and aj+1(x0) < φ(xj+1, x0) if 0 ≤ j < M − 1. For 0 ≤ j < M − 1, the inequality
aj(x0) < φ(xj , x0) implies that

σ2 +

j∑
i=0

φ2(xi, x0) < φ(xj , x0)

j∑
i=0

φ(xi, x0).

This, in turn, implies that

aj+1(x0) =

σ2 +
j∑
i=0

φ2(xi, x0) + φ2(xj+1, x0)

j+1∑
i=0

φ(xi, x0)

<

φ(xj , x0)
j∑
i=0

φ(xi, x0) + φ2(xj+1, x0)

j+1∑
i=0

φ(xi, x0)

≤ φ(xj+1, x0).

�

2.3.2 OWF algorithm for denoising

In this section, we give an algorithm for computing the estimator (26). The parameters of OWF
are the variance σ2 of the white Gaussian noise, the patch size m and the search window size
M respectively. The kernel K0 is taken to be κ0 defined by (27). In the definition of aj(x0) (see
Algorithm), the denominator can be 0, in which case aj(x0) = +∞. In practice, the maximal value
of aj(x0) is set to a large value amax (e.g. amax = 105 × fmax).
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Algorithm OWF : Optimal Weights Estimator

Initialization : A noisy input image v with maximal brightness fmax and the noise variance σ2.
Parameters : Size M of spatial neighborhoods, size m of patches.

for each pixel x0 ∈ Ω do

1. Estimation of adaptive bandwidth :

– for i = 0 to M − 1 do
compute φv(xi, x0) =

[
‖v(xi)− v(x0)‖K0,2 −

√
2σ
]
+
.

end for

– Sort {φv(xi, x0)} such that φv(x0, x0) ≤ · · · ≤ φv(xM−1, x0).

– for j = 0 to M − 1 do

compute aj(x0) = min

{
σ2 +

∑j
i=0 φ

2
v(xi, x0)∑j

i=0 φv(xi, x0)
, amax

}
.

end for

– Select j∗ = max{0 ≤ j ≤M − 1 : aj(x0) ≥ φ(xj , x0)}.
– Compute the optimal bandwidth : â(x0) = aj∗(x0).

2. Computation of the estimator : f̂(x0) =

∑
xi∈Uh(x0)

K4

(
φv(xi,x0)
â(x0)

)
v(xi)∑

xi∈Uh(x0)
K4

(
φv(xi,x0)
â(x0)

) .

end for

Our implementation in “C++” and “Matlab” of the algorithm can be found on the web site :
http://serpico.rennes.inria.fr/doku.php?id=software:owf

In our experiments (4), we focused on real images corrupted by white Gaussian noise with a
known variance σ2. The numerical simulations show that our filter outperforms the classical NL-
means filter under the same conditions. On real noisy images, the value σ2 is estimated according to
the robust method presented in [23, 52] (see also [20]). Other methods could be used to estimate σ2

as described in [53, 54, 55]). Note that OWF individually processes each pixel and then can exploit
a spatially-varying noise variance σ2(x) (e.g. signal-dependent noise) estimated locally as described
in [56, 38]. To complete the description of OWF, we give a justification of the oracle filter in the
next section.

3 Properties of the oracle filter

3.1 Main convergence properties and theoretical results

In this section, we show that the oracle estimator f∗h(x0) attains the optimal rate of convergence.
Set φ(x) = |f (x)− f (x0)|. Let w(x, x0) be the optimal weights given by (16) and a(x0) be the
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bandwidth given by (17). Recall that the oracle filter f∗h(x0) is defined by

f∗h(x0) =
∑

x∈Uh(x0)

w(x, x0)v(x) with w(x, x0) =
K4

(
φ(x,x0)
a(x0)

)
∑

y∈Uh(x0)

K4

(
φ(y,x0)
a(x0)

) , x ∈ Uh(x0). (33)

First we prove the convergence of f∗h(x0). This will be done under the condition that the image f
satisfies the local Hölder condition :

|f(x)− f(y)| ≤ L‖x− y‖β∞, x, y ∈ Uh(x0), (34)

where 0 < β ≤ 1 is a constant, h > 0, and x0 ∈ Ω.
In the following c, ci denote positive constants depending only on L, β and σ ; their values can

be different from line to line. O(an) denotes a sequence bounded by can for all n ≥ 1.
Theorem 3.1. Assume that f satisfies the local Hölder’s condition (34). Let h ≥ c1n

−α, where

0 ≤ α ≤ 1
2β+2 and c1 > 0 if 0 < α < 1

2β+2 , c1 > c0 =
(
σ2(β+2)(2β+2)

8L2β

) 1
2β+2 if α = 1

2β+2 . Let f
∗
h(x0)

be the oracle filter given by (33) with φ(x, x0) = |f (x)− f (x0)|. Then

E (f∗h(x0)− f(x0))2 = O
(
n
− 2β

2+2β

)
. (35)

Proof : See Appendix A.2. �
The next result shows that the rate of convergence of the oracle filter f∗h remains the same when

instead of the precise relation φ(x, x0) = |f (x)− f (x0)| we have the following bound

φ(x, x0) ≤ α |f (x)− f (x0)|+ δn, x ∈ Uh(x0), x0 ∈ Ω, (36)

where α > 0 is a constant and δn ≥ 0 is a small deterministic error.
Theorem 3.2. Assume that f satisfies the local Hölder’s condition (34). Let h ≥ c1n

−α, where

0 ≤ α ≤ 1
2β+2 and c1 > 0 if 0 < α < 1

2β+2 , c1 > c0 =
(
σ2(β+2)(2β+2)

8L2β

) 1
2β+2 if α = 1

2β+2 . Let f
∗
h(x0)

be the oracle filter given by (33) with φ(x, x0) satisfying (36), and suppose that the error term in
(36) satisfies δn = O

(
n
− β

2+2β

)
. Then

E (f∗h(x0)− f(x0))2 = O
(
n
− 2β

2+2β

)
. (37)

Proof : See Appendix A.2. �
Now we present a result which shows that the choice φv(x, x0) satisfies (36) with high probability

for δn = O
(
n
− β

2+2β

)
, provided that the patch size η and the search window size h are properly

chosen.
Theorem 3.3. Assume that f satisfies the local Hölder’s condition (34) and that h = c1n

− 1
2β+2

with c1 > c0 =
(
σ2(β+2)(2β+2)

8L2β

) 1
2β+2 . Assume also that η = c2n

−α for some 1
2(β+1)2

< α < 1
2β+2 and

c2 > 0. Then, there are constants α0 > 0 and c3 > 0, such that

lim
n→∞

max
x0∈Ω

max
x∈Uh(x0)

P
{
φv(x, x0) ≤ α0 |f (x)− f (x0)|+ c3n

− β
2+2β

}
= 1. (38)
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The proof will be given in the Appendix A.3. We mention that the summands in the norm
‖v(x) − v(x0)‖K0,2 in the definition (24) of φv(x, x0) are not necessarily independent when the
windows V (x) and V (x0) overlap, as it will be seen from the proof.

Theorem 3.1 ensures that the oracle filter converges at the optimal rate when the radius of the
search window h is chosen appropriately. Indeed, when h is of the usual optimal order n−

1
2β+2 , the

convergence of the oracle filter rate is n−
2β

2β+2 which is the usual optimal convergence rate for a
given Hölder smoothness β (see for example [31]). When the radius h is chosen larger, for instance
of order n−α with 0 ≤ α < 1

2β+2 , we still get the optimal rate of convergence of the oracle filter.
This is explained by the fact that the order of the bandwidth a(x0) in both cases remains the same,
as shown in (35) and (37)

Theorem 3.1 also shows that the oracle filter f∗h has an adaptivity property. Actually, at each
pixel x0, the filter adapts to the best rate of convergence. To better understand this, assume that
the image f has Hölder smoothness β = β(x0) at x0 and that h ≥ c0n

−α with 0 ≤ α < 1
2β+2 ,

which means that the radius h > 0 of the search window Uh(x0) has been chosen larger than the
standard n−

1
2β+2 . In particular, the larger β is, the better the rate of convergence, which ensures good

estimation of the flat regions. Since Theorem 3.2 is valid for arbitrary β, it applies for the maximal
local Hölder smoothness β(x0) at x0, the oracle f∗h(x0) will exhibit the best rate of convergence

of order n−
β(x0)

2+2β(x0) at x0. Therefore, the procedure adapts to the best rate of convergence at each
point x0 of the image.

We justify by simulation results that the difference between the oracle f∗h computed with
φf (x, x0) = |f (x)− f (x0)|, and the true image f , is extremely small (see Table 1). This shows
that, at least from the practical point of view, it is justified to optimize the upper bound Jφ(w)
instead of optimizing the pointwise L2 risk (or Mean Square Error) E (f∗h(x0)− f(x0))2 itself.

From Theorem 3.3 it follows that the local Hölder’s condition (34) implies the regularity of the
function φ(x, x0) in x. Indeed, Theorem 3.3 states that, under appropriate assumptions, φv(x, x0)
has the same decay rate as |f(x) − f(x0)| with high probability. We mention that another type of
condition related to patch regularity in the patch space has been considered in [40].

Below, we mention the differences between our approach and the theory of adaptive choice of the
bandwidth in nonparametric estimation. The well known standard minimax results for nonparame-
tric kernel estimators of functions under Hölder’s condition have been established when the weights
w(xi, x0) = K(xi−x0a ) depend on the spatial position of the pixels xi and x0 (but not on the values
f(xi) and f(x0) of the function f). In the NL-means setting the weights w(xi, x0) = K(f(xi)−f(x0)

a )
depend on the the unknown function f so that the situation is quite different from that in the non-
parametric estimation. The usual theory of adaptive choice of the bandwidth also does not apply
here since the corresponding results have not been established for the situation that we encounter
here. In particular the adaptive theory of Lepski [57, 58] does not apply in this case. In practice it
may encounter some difficulties related to the fact that the method is based on consecutive testing
of a sequence of estimators f̂a1 , . . . , f̂am with increasing bandwidths a1 < · · · < am, i.e. it selects
the bandwidth aj when |f̂aj − f̂ai | does not exceed a certain critical value for all i < j for the last
time j. The practical difficulty is that this procedure select aj too late since the estimator f̂aj has
already accumulated some bias to attain the critical value.

Actually, our method is very different for the following reasons : we first compute the oracle
bandwidth a(x0) and the oracle weights by Theorem 2.1 which depends on the unknown function f
(based on Theorem 2.2), then we plug-in an estimator instead of the unknown function to compute
the adaptive bandwidth. To the best of our knowledge our result is the first theoretical work on
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the minimax properties for f∗h(x0). The plug-in method for the choice of the bandwidth that we
propose here is also new in the image denoising.

3.2 Numerical performance of the oracle filter

In this section, given the true image f , we evaluated the performance of the oracle estimator (18)
defined in Section 2.2 where φ(x, x0) := |f(x)− f(x0)|. The computation of the oracle estimator is
very fast and is controlled by a unique free parameter, that is the neighborhood size M . The oracle
bandwidth a(x0) is computed as described in Section 2.3.1. by setting φ(x, x0) := |f(x)− f(x0)|.

Each original image was corrupted with white Gaussian noise (WGN) with zero mean and
variance σ2. The performance of OWF is measured by the Peak Signal-to-Noise Ratio (PSNR) in
decibels (db) :

PSNR = 10 log10

2552

MSE
, with MSE =

1

card(Ω)

∑
x∈Ω

(f(x)− f̂(x))2,

where f is the original image, and f̂ the estimator. In Table 1, we observe first that the performance
(PSNR values) of the oracle estimator increases with M for all the tested images and for any σ
values. We also computed two oracle estimators based on the usual Gaussian and the triangle kernels
(see Theorem 2.1) and controlled by a unique bandwidth b. In our experiments, we exploited the
set of oracle bandwidth values {a(x)} obtained previously to set the global bandwidth b as follows :
b = |Ω|−1

∑
x∈Ω a(x). The average of oracle bandwidths, depending on σ and M , appeared to be a

satisfying choice as confirmed by the experimental results. Finally, the two kernels have been scaled
to get a fair comparison presented in Table 2. It turns out that the adaptive oracle filter provides the
best PSNR values in all cases. In the case of non-adaptive filters, the Gaussian kernel gave PSNR
results slightly superior (0.1 to 0.2 db) to the ones obtained with the triangular kernel.

4 Simulations and experimental results

We evaluated OWF on 25 natural images showing natural, man-made, indoor and outdoor
scenes (see Figure 2). To avoid the undesirable border effects in our simulations, we mirror the
image outside the image limits, that is we extend the image outside the image limits symmetrically
with respect to the border. At the corners, the image is extended symmetrically with respect to the
corner pixels. In our procedure (see Section 2.3.2), the central patch does not get a particular status
and is processed as any patch unlike the usual NL-means methods. This is possible thanks to the
triangle kernel where the positive part of a(x0)−φ(x, x0) saturates the lower values of φ(x, x0). For
similar conclusions, we refer to [59, 60]. This is a clear advantage of OWF. In the experiments, we
found that the parameters m andM can be fixed to m = 27×27 andM = 13×13 to get the highest
PSNR values (smaller patch sizes m can be considered for processing piecewise smooth images).
This means that the method provides better results for a high rate of overlapping patches. In [7, 23],
the authors recommended to use small patches and large search windows : m < M : m = 7× 7 and
M = 21× 21.

4.1 Analysis of algorithm results

In this section, the potential of OWF is mainly illustrated with the 512×512 “lena” and “barbara”
images. First, in Figure 3(c), we can see that the noise is reduced in a natural manner and significant
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cameraman
(256× 256)

peppers house lena barbara
(256× 256) (256× 256) (512× 512) (512× 512)

boat man couple hill
(512× 512) (512× 512) (512× 512) (512× 512)

alley computer dice flowers
(192× 128) (704× 469) (704× 469) (704× 469)

girl traffic trees valldemossa
(704× 469) (704× 469) (192× 128) (769× 338)

maya asia
(313× 473) (313× 473)

aircraft panther
(473× 313) (473× 313)

castle young man
(313× 473) (313× 473)

tiger man picture
(473× 313) (473× 313)

Figure 2 – Plot Set of 25 tested images. Top left : images from the websites (http: // www. cs. tut. fi/ ~foi/
GCF-BM3D/ ) ; Bottom left : images from IPOL (http: // www. ipol. im ) ; Right : images from the Berkeley segmen-
tation database (https: // www2. eecs. berkeley. edu/ Research/ Projects/ CS/ vision/ bsds/ ).
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a 

b 

c 
d 

e 

f 

(a) Original image “lena” (b) Noisy image with σ = 20, PSNR = 22.11db

(c) Restored with OWF, PSNR= 32.65db (d) Square error with OWF

(e) Restored with NL-means, PSNR= 31.51db (f) Square error with NL-means

Figure 3 – Results of denoising “lena” 512 × 512 image. The noisy “lena” image (sigma = 20) with six selected
search windows centered at pixels a, b, c, d, e, f is shown in (b). Comparing (d) and (f) we see that the Optimal
Weights Filter (OWF) captures more details than NL-means [7].
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geometric features, fine textures, details and original contrasts are visually well recovered with no
undesirable artifacts (PSNR = 32.65db, “lena” image). To better appreciate the accuracy of the
restoration process, the square of the difference between the original image and the recovered image
is shown in Figure 3(d), where the dark values correspond to a high-confidence estimate. As expected,
pixels with a low level of confidence are located in the neighborhood of image discontinuities. For
comparison, we present the image denoised by NL-means [7] in Figures 3(e) and (f), which show
that the overall visual impression and the numerical results are improved using our algorithm.

OWF provides a feasible and rational method to detect automatically the details of images
and take the proper weights for every possible geometric configuration of the image. For illustration
purposes, we have chosen a series of search windows Uh(x0) with centers at some testing pixels x0 on
the noisy image (see Figure 3(b)). The distribution of the weights inside the search window Uh(x0)
depends on the estimated brightness variation function φv(x, x0), x ∈ Uh(x0). If the estimated
brightness variation φv(x, x0) is less than â(x0), the similarity between pixels is measured by a linear
decreasing function of φv(x, x0), otherwise it is zero. Thus â(x0) acts as an automatic threshold. In
Figure 4, it is shown how OWF selects a proper weight configuration in each case. On the second
row of Figure 4, we observe a ringing effect produced by OWF but this artifact is not so visible
at other locations in Figure 4 and on images presented in Figs. 7-9. For comparison, we display in
Figure 5 the corresponding weights for the standard NL-means filter. From Figs. 4-5, we can see
that the distribution of the weights are rather different for the two filters.

In Figure 6, the distribution of bandwidth values is displayed for the “lena” and “barbara” images
corrupted by WGN (σ = 5 and σ = 20). The values of a(x0) are low in flat zones and higher along
image discontinuities. In homogeneous regions, small values are expected since all local patches are
similar and the neighborhood contains many repeated patterns. The histograms of bandwidth values
{a(x0)} vary a lot from one image to another and depend on signal-to-noise ratios.

Finally, to demonstrate the performance of adaptive bandwidth, we compared the PSNR values
with those obtained with the OWF algorithm by imposing a constant bandwidth a = σ2/A with A =
{2., 2.5, 5., 7.5, 10., 25., 30., 35., 50., 60., 100.}. The bandwidth depends here on the noise variance as
generally recommended in the literature. From the results in Table 3 and Table 4, we found an
optimal value A corresponding to a maximum PSNR value for each tested image and each tested
noise variance. Clearly, this value is not the same for the nine tested images and the maximum
PSNR values is generally lower (about 0.7 db in average) than the the PSNR value obtained with
the (adaptive) OWF. In addition the optimal value A is not the same from one σ2 value to another.
This experiment shows clearly that OWF unequivocally outperforms the non-adaptive OWF which
needs a specific adjustment of the bandwidth depending on the noise variance.
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Original image Noisy image 2D representation 3D representation Restored image
of the weights of the weights
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Figure 4 – These pictures show how OWF detects the features of the image by choosing appropriate weights. The
first column displays six selected search windows used to estimate the image at the corresponding central pixels a, b, c,
d, e and f (see Figure 3(b)). The second column displays the corresponding search windows corrupted by a Gaussian
noise with standard deviation σ = 20. The third column displays the two-dimensional representation of the weights
used to estimate central pixels. The fourth column gives the three-dimensional representation of the weights. The fifth
column gives the restored images.
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Original image Noisy image 2D representation 3D representation Restored image
of the weights of the weights

a 

−20

−10

0

10

20
−20

−15

−10

−5

0

5

10

15

20

0

0.005

0.01

b 

−20

−10

0

10

20
−20

−15

−10

−5

0

5

10

15

20

0

0.05

0.1

c 

−20

−10

0

10

20
−20

−15

−10

−5

0

5

10

15

20

0

2

4

x 10
−3

d 

−20

−10

0

10

20
−20

−15

−10

−5

0

5

10

15

20

0

1

2

3

x 10
−3

e 

−20

−10

0

10

20
−20

−15

−10

−5

0

5

10

15

20

0

0.02

0.04

f 

−20

−10

0

10

20
−20

−15

−10

−5

0

5

10

15

20

0

1

2

3

x 10
−3

Figure 5 – These pictures show how the Non-Local Means detects the features of the image by choosing appropriate
weights. The first column displays six selected search windows used to estimate the image at the corresponding central
pixels a, b, c, d, e and f (see Figure 3(b)). The second column displays the corresponding search windows corrupted
by a Gaussian noise with standard deviation σ = 20. The third column displays the two-dimensional representation
of the weights used to estimate central pixels. The fourth column gives the three-dimensional representation of the
weights. The fifth column gives the restored images.
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σ = 5 σ = 20

σ = 5 σ = 20

Figure 6 – Images and histograms of bandwidth values for two images (“lena” (two first rows), “barbara” (two last
rows)) corrupted by white Gaussian noise (σ = 5 and σ = 20). The “hot” colors correspond to large values of a(x)
and “cold” colors to small values of a(x). 19



Table 1 – Denoising results using the oracle estimator (18) with φ(x, x0) = |f(x)− f(x0)| on nine tested images.
The PSNR values are averaged over 3 experiments corresponding to 3 different noise realizations.

σ = 5 σ = 15 σ = 25 σ = 50
M 13×13 25×25 49×49 13×13 25×25 49×49 13×13 25×25 49×49 13×13 25×25 49×49

barbara 45.01 47.86 50.82 38.50 41.35 44.30 35.47 38.34 41.30 31.27 34.25 37.24
cameraman 45.85 48.65 51.41 39.29 42.11 44.84 36.24 39.09 41.81 31.96 35.02 37.81

lena 46.17 49.01 51.92 39.70 42.55 45.39 36.67 39.58 42.42 32.42 35.48 38.37
girl 50.03 52.93 55.62 43.16 46.28 48.89 39.76 43.18 45.81 34.79 38.79 41.75

traffic 45.49 48.36 51.34 38.87 41.86 44.79 35.76 38.81 41.80 31.45 34.66 37.73
valldemossa 44.51 47.56 50.73 37.94 41.10 44.20 34.86 38.13 41.23 30.51 34.03 37.22
aircraft 50.53 53.71 56.84 43.81 47.98 50.26 40.62 43.97 47.25 36.22 39.67 43.07
castle 46.01 38.95 51.98 39.42 42.42 45.44 36.31 39.39 42.46 31.98 35.22 38.40
maya 46.75 50.03 53.42 40.29 43.58 46.98 37.22 40.54 43.95 32.97 36.33 39.76

Table 2 – Table 2 : Comparison (PSNR values) between the “oracle” filter with spatial adaptive kernel (A-K4) and
with non-adaptive triangular (K4) and Gaussian (KG) kernels for different values of search window sizes (M ×M)
on several images corrupted by white Gaussian noise (σ = 20).

11× 11 13× 13 15× 15 17× 17 19× 19 21× 21

OWF
barbara K4

KG

36.64 db
36.35 db
36.47 db

37.46 db
37.16 db
37.28 db

38.17 db
37.86 db
37.98 db

38.79 db
38.44 db
38.56 db

39.32 db
38.95 db
39.07 db

39.79 db
39.40 db
39.53 db

OWF
boat K4

KG

36.74 db
36.31 db
36.39 db

37.55 db
37.12 db
37.19 db

38.22 db
37.80 db
37.88 db

38.82 db
38.37 db
38.46 db

39.36 db
38.87 db
38.97 db

39.84 db
39.33 db
39.43 db

OWF
house K4

KG

37.38 db
37.15 db
37.29 db

38.16 db
37.89 db
37.99 db

38.82 db
38.51 db
38.61 db

39.37 db
38.97 db
39.12 db

39.84 db
38.46 db
39.60 db

39.94 db
39.80 db
39.91 db

OWF
lena K4

KG

37.73 db
37.27 db
37.37 db

38.52 db
38.06 db
38.17 db

39.20 db
38.73 db
38.83 db

39.78 db
39.32 db
39.41 db

40.28 db
39.82 db
39.92 db

40.73 db
40.28 db
40.39 db

OWF
peppers K4

KG

36.54 db
36.39 db
36.49 db

37.28 db
37.04 db
37.14 db

37.83 db
37.62 db
37.71 db

38.33 db
38.10 db
38.19 db

38.75 db
38.54 db
38.63 db

39.14 db
38.91 db
38.99 db

OWF
Average K4

KG

37.00 db
36.69 db
36.80 db

37.79 db
37.45 db
37.55 db

38.45 db
38.10 db
38.20 db

39.02 db
38.64 db
38.75 db

39.51 db
38.93 db
39.24 db

39.89 db
39.34 db
39.65 db

4.2 Comparison with state-of-the-art algorithms

The results on the 25 images (Figure 2) demonstrate that OWF is competitive when compared to
state-of-the-art algorithms and significantly improves the NL-means results. In Table 5, we provide
the PSNR values for all the tested images and different signal-to-noise ratios.

Tables 6-8 compares the PSNR values on these 25 images obtained by OWF and three more
recent state-of-the-art denoising methods [11, 13, 14] ; PEWA [14] can viewed as a generalization of
NL-means. Unlike [11, 13, 14], OWF is a pointwise approach, does include no aggregation procedure
(central projection [60]) and only one stage is required with OWF. In our experiments, we used the
implementations provided by the authors : BM3D (http://www.cs.tut.fi/~foi/GCF-BM3D/) and
NL-Bayes (http://www.ipol.im). The best PSNR values are in bold. We also compared OWF to
the baseline NL-means [7] and DCT [2] (using the implementation of IPOL – http://www.ipol.im).
Finally, we compared the results to the S-PLE method which uses SURE to guide the probabilistic
patch-based filtering described in [16]. From Tables 6-8, the performance of OWF, computed from
the 25 test images, is close to S-PLE [16]. For very high σ values (σ ≥ 50), OWF produces results
similar to those obtained with NL-means [7] and DCT [2]. Figures (7)-(9) provide a visual compari-

20

http://www.cs.tut.fi/~foi/GCF-BM3D/
http://www.ipol.im
http://www.ipol.im


Table 3 – Performance (PSNR) of OWF (adaptive bandwidth) and the OWF algorithm with a constant bandwidth
a when applied to nine selected images corrupted by white Gaussian noise (σ = 5). We give the results for several
values of bandwidth a = σ2/A where A ∈ {2.0, 2.5, 5.0, 7.5, 10, 25, 30} and m = 27 × 27,M = 13 × 13. The PSNR
values are averaged over 3 experiments corresponding to 3 different noise realizations. We denote K4,A the OWF
with constant bandwidth a and the best PSNR values are in bold.

σ = 5 OWF K4,2.0 K4,2.5 K4,5.0 K4,7.5 K4,10 K4,25 K4,30

barbara 37.34 36.02 36.49 36.31 35.97 35.68 34.81 34.70
cameraman 37.17 36.14 36.54 36.40 36.24 36.13 35.75 35.64

lena 38.35 36.34 36.86 37.50 37.25 36.86 35.52 35.29
girl 43.72 40.15 41.00 43.01 43.28 42.88 40.42 40.04

traffic 37.10 35.37 35.99 36.20 35.97 35.81 35.25 35.15
valldemossa 36.22 35.57 35.74 35.64 35.51 35.43 35.20 35.17
aircraft 37.01 35.00 35.49 35.85 35.74 35.55 34.51 34.42
castle 37.29 35.60 36.11 36.70 36.58 36.31 35.80 35.71
maya 34.29 34.22 34.28 34.18 34.16 34.16 34.16 34.16

Average 37.61 36.04 36.50 36.87 36.74 36.53 35.71 35.60

Table 4 – Performance (PSNR) of OWF (adaptive bandwidth) and the basic OWF algorithm with a constant
bandwidth a when applied to nine selected images corrupted by white Gaussian noise (σ = 25). We give the results
for several values of bandwidth a = σ2/A where A ∈ {10, 25, 30, 35, 50, 60, 100} and m = 27 × 27,M = 13 × 13.The
PSNR values are averaged over 3 experiments corresponding to 3 different noise realizations. We denote K4,A the
OWF with constant bandwidth a and the best PSNR values are in bold.

σ = 25 OWF K4,10 K4,25 K4,30 K4,35 K4,50 K4,60 K4,100

barbara 29.96 23.42 27.45 28.21 28.75 29.36 29.23 27.53
cameraman 27.92 23.75 27.93 27.99 27.92 27.40 26.94 25.53

lena 31.57 26.40 29.43 30.08 30.56 31.29 31.37 30.26
girl 35.73 33.63 34.84 35.12 35.36 35.85 36.02 35.87

traffic 28.10 23.23 25.98 26.53 26.93 27.36 27.15 25.55
valldemossa 26.14 20.83 24.65 25.08 25.24 24.83 24.34 23.17
aircraft 30.29 25.69 28.11 28.64 29.02 29.58 29.62 28.60
castle 28.76 23.74 27.34 27.62 27.67 27.35 27.08 26.21
maya 24.22 18.43 23.33 23.66 23.52 22.48 21.93 20.99

Average 29.19 24.35 27.67 28.10 28.33 28.39 28.19 27.08

son of the different methods applied to the “aircraft” (WGN, σ = 5), “valldemossa” (WGN, σ = 20)
and “traffic” (WGN, σ = 15) images. We observe that the results in detail preservation and smoo-
thing are improved with OWF when compared to NL-means. We also observe very small differences
between OWF and S-PLE (confirmed by PSNR values in Table 8). It is worth noting that OWF
does not introduce mottling effect in the restored images unlike most sophisticated patch-based
methods.

Finally, we visually compared the results obtained by the most related methods [7, 23, 34, 16].
In Figures 10-11, OWF gives similar results to the NL-means http://www.ipol.im) if we consider
the usual parameters : m = 7 × 7 patches and M = 21 × 21 . If we set m = 27 × 27 patches and
M = 13×13, for σ ≤ 20, OWF outperforms the NL-means and the performance is actually very close
and sometimes higher than [23] (SAFIR), [34] (TV-means) and [16] (S-PLE, http://www.ipol.im).
In Figure 10, the PSNR values are the same with OWF and the considered algorithms but our results
appear more natural visually. Note that we did not observe high visual patch adherence effects or
jittering effects on the images denoised with OWF (a small ringing effect is only visible in Figure 4)
as it is the case with variants of NL-means filters. The jittering effect can be reduced by applying
adaptive regularizing nonlocal methods [38]. Post-processing the images denoised with OWF seems
not useful at first glance from our experiments.
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Table 5 – Denoising results using OWF (m = 27× 27,M = 13× 13) on the 25 tested images for several values of
σ. The PSNR values are averaged over 3 experiments corresponding to 3 different noise realizations.

σ = 5 σ = 10 σ = 15 σ = 20 σ = 25 σ = 50
barbara 37.34 34.04 32.34 31.01 29.96 26.05
boat 36.73 33.44 31.45 30.27 29.20 25.74

cameraman 37.17 33.11 31.05 29.69 28.66 25.57
couple 36.97 33.46 31.54 30.09 28.93 25.20
hill 36.80 33.37 31.49 30.18 29.20 26.00

house 38.71 35.77 34.01 32.90 31.73 27.71
lena 38.35 35.59 33.95 32.65 31.57 27.76
man 37.31 33.67 31.65 30.26 29.17 25.92

peppers 37.11 33.74 31.89 30.55 29.45 25.64
Average 37.39 34.02 32.15 30.84 29.76 26.17
alley 35.84 31.67 29.60 28.25 27.21 23.78

computer 37.93 34.26 32.23 30.77 29.60 25.79
dice 45.99 42.73 40.48 38.70 37.21 32.12

flowers 42.45 38.91 36.62 34.93 33.63 29.64
girl 43.72 40.66 38.60 37.01 35.73 31.60

traffic 37.10 32.91 30.70 29.22 28.10 24.86
trees 34.80 29.81 27.33 25.78 24.70 21.87

valldemossa 36.22 31.40 28.89 27.28 26.14 22.91
Average 39.25 35.29 33.05 31.39 30.29 26.57
aircraft 37.01 34.14 32.54 31.32 30.29 26.90
asia 37.77 33.95 31.85 30.38 29.25 26.01
castle 37.29 33.26 31.27 29.87 28.76 25.44

man picture 36.17 32.35 30.25 28.76 27.61 23.77
maya 34.29 29.27 27.00 25.41 24.22 20.86

panther 37.74 33.49 31.38 29.86 28.70 25.24
tiger 36.41 32.57 30.45 28.95 27.78 24.23

young man 39.10 35.96 34.37 33.16 32.16 28.41
Average 36.97 33.12 31.14 29.71 28.59 25.10
Average 37.85 34.14 32.11 30.65 29.55 25.96

4.3 Computings and algorithm implementation

In terms of computational complexity, denoising a 512× 512 grayscale image with an unoptimi-
zed implementation of our method in C++ take about 50s (Intel Core i7 64-bit CPU 2.4 Ghz). The
implementation of OWF is straightforward compared to more sophisticated algorithms developed
in recent years. Nevertheless, the values {φv(x, x0)} in the search window centered at pixel x0 are
sorted (from the smallest one to the largest one). This step is mandatory in OWF and takes time
to compute. A faster sort algorithm can be potentially used to speed OWF and to get timings
closer to those obtained with BM3D [11]. Moreover, we did not evaluate all the possible imple-
mentations as described for instance in [61, 62]. Note that OWF has been recently implemented in
parallel since every patch can be processed independently. The computational times become a few
seconds in that case 1.

Additionally, we have also evaluated the performance of the algorithm with a block implemen-
tation. The block (or patchwise) implementation is very popular in patch-based approaches and our
implementation is similar to the description given in Section 5.5.2 in [7] (see also [51, 52]). The idea
consists in computing a block/patch estimator given an estimation of the bandwidth attached to

1. Supporting software and an online demo will be submitted to IPOL - Image Processing On Line - website
(http://www.ipol.im)
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Table 6 – Performance (PSNR) of denoising algorithms when applied to the 25 noisy (WGN) images (σ = 5). The
PSNR values are averaged over 3 experiments corresponding to 3 different noise realizations. The best PSNR values
are in bold.

σ = 5 OWF PEWA BM3D NL-BAYES S-PLE NL-MEANS DCT
[14] [11] [13] [16] [7] [2]

barbara 37.34 38.09 38.31 38.38 37.46 37.08 37.98
boat 36.73 37.12 37.28 37.26 36.49 36.35 36.63

cameraman 37.17 38.20 38.29 38.35 37.68 37.04 37.24
couple 36.97 37.35 37.52 37.40 37.21 36.05 36.75
hill 36.80 37.01 37.13 37.04 36.83 36.56 36.38

house 38.71 39.56 39.83 39.58 38.97 38.64 38.92
lena 38.35 38.57 38.72 38.72 38.28 36.67 38.17
man 37.31 37.68 37.82 37.86 37.46 36.81 36.80

peppers 37.11 38.00 38.12 38.10 37.64 36.02 36.80
alley 35.84 36.29 36.37 36.50 36.02 35.45 35.69

computer 37.93 39.04 39.11 39.29 38.49 38.12 37.63
dice 45.99 46.82 46.64 46.40 46.09 45.58 45.45

flowers 42.45 43.48 43.61 43.18 42.87 40.87 42.68
girl 43.72 43.95 43.92 43,89 43.47 42.28 43.06

traffic 37.10 37.85 37.81 37.90 37.53 36.86 36.77
trees 34.80 34.88 34.89 34.97 34.79 33.86 34.59

valldemossa 36.22 36.65 36.70 36.75 36.29 35.74 36.03
aircraft 37.01 37.59 37.57 37.70 36.75 37.39 36.72
asia 37.77 38.67 38.76 38.72 38.39 37.65 37.80
castle 37.29 38.06 38.11 38.22 37.69 37.35 37.28

man picture 36.17 37.78 37.90 37.75 37.35 36.86 36.79
maya 34.29 34.72 34.82 34.88 34.75 33.75 34.48

panther 37.74 38.53 38.62 38.71 38.48 37.21 38.10
tiger 36.41 36.92 37.22 37.22 36.94 36.13 36.61

young man 39.10 40.79 40.94 41.00 40.56 39.60 39.92
Average 37.85 38.54 38.64 38.60 38.17 37.44 37.81

the central pixel of each block/patch. Several estimators are collected at the same pixel location
because of patch overlapping and are aggregated by computing the uniform average. Surprisingly,
the quality increases by 0.1 db at most with the patchwise OWF, which is visually imperceptible.

Finally, the algorithm can be potentially iterated ; in that case, the denoised image after the
first iteration is processed by OWF given an estimation of the noise variance. The PSNR values
increases in the range [0, 0.4] db, depending on the images and the signal-to-noise ratios.

In all our experiments, the PSNR values correspond to the application of the straightforward
pointwise OWF procedure with no iteration.

5 Conclusion

A new image denoising filter to deal with the additive Gaussian white noise model based on a
weights optimization problem is proposed. The proposed algorithm is computationally fast and its
implementation is straightforward. Although the Gaussian kernel performs reasonably well in most
papers, we showed that it is preferable to choose the triangular kernel with adaptive bandwidth.
The obtained estimator uses an appropriate calibrated patch distance and is shown to converge at
the usual optimal rate, under some regularity conditions on the target function. To the best of our
knowledge such convergence results have not been established so far. The special case of images
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Noisy image

OWF (37.01 db)

NL-means [7] (37.39 db)

S-PLE [16] (36.75 db)

NL-Bayes [13] (37.70 db)

PEWA [14] (37.59 db)

BM3D [11] (37.57 db)

Figure 7 – Comparative results on the “aicraft” image corrupted with WGN (σ = 5). From top to bottom : noisy
image, OWF, NL-means [7], S-PLE [16], NL-Bayes [13], PEWA [14], BM3D [11].
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Noisy image (34.15 db)

OWF (31.40 db)

NL-means [7] (31.26 db)

S-PLE [16] (31.46 db)

NL-Bayes [13] (31.84 db))

PEWA [14] (31.79 db)

BM3D [11] (31.79 db)

Figure 8 – Comparative results on the “valldemossa” image corrupted with WGN (σ = 15). From top to bottom :
noisy image, OWF, NL-means [7], S-PLE [16], NL-Bayes [13], PEWA [14], BM3D [11].
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Noisy image

OWF (30.70 db)

NL-means [7] (30.27 db)

S-PLE [16] (30.92 db)

NL-Bayes [13] (31.04 db)

PEWA [14] (31.13 db)

BM3D [11] (31.05 db)

Figure 9 – Comparative results on the “traffic” image corrupted with WGN (σ = 20). From top to bottom : noisy
image, OWF, NL-means [7], S-PLE [16], NL-Bayes [13], PEWA [14], BM3D [11].
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Table 7 – Performance (PSNR) of denoising algorithms when applied to the 25 noisy (WGN) images (σ = 25).
The PSNR values are averaged over 3 experiments corresponding to 3 different noise realizations. The best PSNR
values are in bold.

σ = 25 OWF PEWA BM3D NL-BAYES S-PLE NL-MEANS DCT
[14] [11] [13] [16] [7] [2]

barbara 29.96 30.28 30.72 30.39 29.38 28.90 29.22
boat 29.20 29.65 29.91 29.67 29.38 28.60 28.69

cameraman 28.66 29.48 29.45 29.33 28.88 28.77 27.60
couple 28.93 29.48 29.72 29.19 29.16 28.28 28.57
hill 29.20 29.56 29.85 29.40 29.33 28.63 28.97

house 31.73 32.77 32.86 32.45 32.22 31.25 31.10
lena 31.57 31.89 32.08 31.86 31.57 30.51 31.02
man 29.17 29.50 29.62 29.33 29.26 28.52 28.49

peppers 29.45 30.30 30.16 30.07 29.69 28.90 28.36
alley 27.21 27.46 27.49 27.59 27.07 26.72 26.04

computer 29.60 30.01 30.16 30.12 29.61 28.99 28.33
dice 37.21 39.36 38.85 39.17 39.02 35.73 37.58

flowers 33.63 34.55 34.62 34.42 33.81 32.26 33.47
girl 35.73 37.33 37.27 37.11 36.86 34.69 36.21

traffic 28.10 28.48 28.53 28.58 28.34 27.74 27.50
trees 24.70 24.69 24.66 24.90 24.82 24.56 25.49

valldemossa 26.14 26.37 26.28 26.50 26.15 25.96 25.34
aircraft 30.29 30.72 30.78 30.84 30.37 29.89 28.93
asia 29.25 29.60 29.55 29.67 29.43 28.84 28.43
castle 28.76 29.49 29.36 29.51 28.89 28.66 28.18

man picture 27.61 28.44 28.54 28.24 27.82 27.33 26.93
maya 24.22 24.28 24.18 24.43 24.21 23.85 23.35

panther 28.70 28.83 28.81 29.07 28.85 28.08 28.06
tiger 27.78 27.99 28.03 28.12 27.81 27.12 27.11

young man 32.16 33.25 33.20 32.90 32.48 31.30 31.32
Average 29.55 30.15 30.19 30.12 29.77 28.96 28.97

with sharp edges needs to be investigated further as in [10, 49].
OWF automatically adjusts the bandwidth parameter and make the filter attractive in many

applications. We need to adjust the patch size in most cases. Our numerical results confirm that
optimal choice of the kernel improves the performance of the non-local means filter, under the same
conditions. OWF is a very competitive filter when compared to recent patch-based filters. 2

A Proofs of the main results

A.1 Proof of Theorem 2.1

We begin with some preliminary results. The following lemma is similar to Theorem 1 of Sacks
and Ylvisaker [44] where, however, the inequality constraints are absent.
Lemma A.1 : Let Jφ(w) be defined by (14). The unique weights w(x, x0) which minimize Jφ(w)

2. Acknowledgments : The authors would like to thank the referees for comments and remarks which helped us to improve
considerably the manuscript. They would also like to thank B. Coll for discussions and fruitful comments and suggestions. Jin
and Liu have been partially supported by the National Natural Science Foundation of China (grants No. 61661039, No. 11571052
and No. 11401590), the Natural Science Fund of Inner Mongolia Autonomous Region (grant No. 2016MS0107) and the Scientific
Research Projection of Higher Schools of Inner Mongolia (grant No. NJZY16017).
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NL-means (PSNR = 31.50 db) SAFIR (PSNR = 32.64 db)

OWF (PSNR = 31.39 db) OWF (PSNR= 32.64 db)
(m = 7× 7, M = 21× 21) (m = 27× 27, M = 13× 13)

TV-means (PSNR = 32.48 db) S-PLE (PSNR = 32.64 db)

Figure 10 – Comparisons of related methods applied to the “lena” image (PSNR = 22.10 db, σ = 20).

28



NL-means (PSNR = 30.22 db) SAFIR (PSNR = 30.37 db)

OWF (PSNR = 30.24 db) OWF (PSNR= 31.01 db)
(m = 7× 7, M = 21× 21) (m = 27× 27, M = 13× 13)

TV-means (PSNR = 30.93 db) S-PLE (PSNR = 30.82 db)

Figure 11 – Comparisons of related methods applied to the “barbara” image (PSNR = 22.10 db, σ = 20).
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Table 8 – Average of denoising results over the 25 tested images for several values of σ. The experiments with
NL-Bayes [13], S-PLE [16], NL-means [7] and DCT [2] have been performed using the implementations of IPOL
(ipol.im). The best PSNR values are in bold.

σ = 5 σ = 10 σ = 15 σ = 20 σ = 25 σ = 50
BM3D [11] 38.64 34.78 32.68 31.25 30.19 26.97
PEWA [14] 38.54 34.75 32.67 31.26 30.15 26.95

NL-Bayes [13] 38.60 34.75 32.48 31.22 30.12 26.90
S-PLE [16] 38.17 34.38 32.35 30.67 29.77 26.46

OWF 37.85 34.14 32.11 30.65 29.55 25.96
NL-means [7] 37.44 33.35 31.00 30.16 28.96 25.53

DCT [2] 37.81 33.57 31.87 29.95 28.97 25.91

subject to
w(x, x0) ≥ 0 and

∑
x∈Uh(x0)

w(x, x0) = 1 (39)

are given by

w(x, x0) =
1

σ2
[λ− S(x0)φ(x, x0)]+, (40)

where λ and S(x0) are uniquely determined by∑
x∈Uh(x0)

1

σ2
[λ− S(x0)φ(x, x0)]+ = 1, (41)

and ∑
x∈Uh(x0)

1

σ2
[λ− S(x0)φ(x, x0)]+φ(x, x0) = S(x0). (42)

Proof : Since the objective functional Jφ(w) is continuous, it attains its minimum on the compact
set determined by the constraints (39). Therefore the minimization problem has at least one solution.
Recall that M = card (Uh(x0)). Consider the Lagrange function

J̄ (w) = Jφ(w)− 2λ

 ∑
x∈Uh(x0)

w(x, x0)− 1

− 2
∑

x∈Uh(x0)

g(x)w(x, x0),

where w, g ∈ RM are vectors whose components are respectively w(x, x0), x ∈ Uh(x0) and g(x) ≥ 0,
x ∈ Uh(x0), and λ ∈ R. Let w∗ be a minimizer of Jφ(w) under the constraints (39).

We first give an expression for w∗(x, x0). By standard results (cf. Theorem 2.2 of Rockafellar
(1993 [63]) ; see also Theorem 3.9 of Whittle (1971 [64])), there are Lagrange multipliers λ ∈ R and
g(x) ≥ 0, x ∈ Uh(x0) such that the following Karush-Kuhn-Tucker conditions hold : writing

S(x0) =
∑

x∈Uh(x0)

w∗(x, x0)φ(x, x0) for x ∈ Uh(x0),
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we have

∂

∂w(x, x0)
J̄ (w)

∣∣∣∣
w=w∗

= 2S(x0)φ(x, x0) + 2σ2w∗(x, x0)− 2λ− 2g(x) = 0, (43)

∂

∂λ
J̄ (w)

∣∣∣∣
w=w∗

= −2

 ∑
x∈Uh(x0)

w∗(x, x0)− 1

 = 0, (44)

∂

∂g(x)
J̄ (w)

∣∣∣∣
w=w∗

= −2w∗(x, x0)

{
= 0, if g(x) > 0,
≤ 0, if g(x) = 0.

(45)

(The equality (45) holds since w∗(x, x0)g(x) = 0 for any x ∈ Uh(x0) by the Karush-Kuhn-Tucker
condition.) Notice that the gradients of the equality constraint function

G(w) =
∑

x∈Uh(x0)

w(x, x0)− 1

and of the active inequality constraint functions (which attain 0 at w∗)

Hx(w) = w(x, x0), x ∈ Uh(x0),

are linearly independent (for details we refer to Theorem 2.2 of Rockafellar [63]). Indeed they
form a subset of the set of the following vectors in RM : (1, . . . , 1), (1, 0, . . . , 0), . . ., (0, . . . , 0, 1).
The vectors in this subset are always linearly independent, since the number of active inequality
constraints (which coincides with the number of weights w∗(x, x0) that are equal to 0) is strictly
less than M = card(Uh(x0)) due to the fact that

∑
x∈Uh(x0)w

∗(x, x0) = 1.
We shall prove that

w∗(x, x0) =
[λ− S(x0)φ(x, x0)]+

σ2
, (46)

with λ and S(x0) satisfying (41) and (42). If g (x) = 0, then, since w∗(x, x0) ≥ 0, from (43) we
obtain

λ− S(x0)φ(x, x0) = σ2w∗(x, x0) ≥ 0.

Taking positive parts in the previous equality we see that (46) holds.
If g(x) > 0, then, by (45), w∗(x, x0) = 0. Taking into account (43) we obtain

λ− S(x0)φ(x, x0) = −g(x) ≤ 0, (47)

so that the relation (46) is again satisfied with

w∗(x, x0) = 0 =
[λ− S(x0)φ(x, x0)]+

σ2
.

Next we prove that λ and S(x0) satisfy (41) and (42). The relation (41) follows immediately
from the constraint (44) and the relation (46). The relation (42), is a consequence of the definition
S(x0) and (46).

Finally we prove the unicity of the weights w∗(x, x0) as well as the unicity of the numbers λ and
S(x0) satisfying (41) and (42). Let a(x0) = λ

S(x0) . Substituting λ = a(x0)S(x0) in (42) we obtain∑
x∈Uh(x0)

[a(x0)− φ(x, x0)]+φ(x, x0) = σ2. (48)
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Since the function
Hφ(z) =

∑
x∈Uh(x0)

[z − φ(x, x0)]+φ(x, x0)

is strictly increasing and continuous on [0,+∞) with Hφ(0) = 0 and lim
z→∞

Hφ(z) = +∞, we see that
a(x0) is the unique solution in (0,+∞) of the equation

Hφ(z) = σ2.

Therefore a(x0) is uniquely determined by φ(x, x0), x ∈ Uh(x0).
In the same way, substituting λ = a(x0)S(x0) in (41) we obtain

S(x0)
∑

x∈Uh(x0)

[a(x0)− φ(x, x0)]+ = σ2. (49)

From this equation we see that S(x0) is also uniquely determined by φ(x, x0), x ∈ Uh(x0). As both
a(x0) and S(x0) are uniquely determined by φ(x, x0), x ∈ Uh(x0) we conclude that the same is true
for λ and then for the weights w(x, x0), x ∈ Uh(x0). �

Proof of Theorem 2.1. We use Lemma A.1. As in the proof of this lemma writing a(x0) = λ
S(x0)

and substituting λ = a(x0)S(x0) in (41) we see that the unique optimal weights w minimizing Jφ(w)
subject to (39) are given by

w∗(x, x0) =
S(x0)

σ2
[a(x0)− φ(x, x0)]+, (50)

where a(x0) and S(x0) are uniquely determined by (48) and (49). With (49) this implies that

w∗(x, x0) =
[a(x0)− φ(x, x0)]+∑

x∈Uh(x0)[a(x0)− φ(x, x0)]+
. (51)

Dividing the numerator and the denominator by a(x0) gives the desired result.

A.2 Proof of Theorem 3.1

Set φ (x, x0) = |f(x) − f(x0)|. Recall that for the function Jφ(w) defined by (14) the optimal
weights w are defined by (16). Using Hölder’s condition (34) we have, for any w,

Jφ(w) ≤ J (w), (52)

where

J (w) =

 ∑
x∈Uh(x0)

w(x, x0)L‖x− x0‖β∞

2

+ σ2
∑

x∈Uh(x0)

w2(x, x0). (53)

By Theorem 2.1,

w(x, x0) =

[
ah(x0)− L‖x− x0‖β∞

]
+∑

y∈Uh(x0)

[
ah(x0)− L‖y − x0‖β∞

]
+

, (54)
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where ah(x0) > 0 is the unique solution on (0,∞) of the equation

Hh(ah(x0)) = σ2, (55)

with
Hh (z) =

∑
x∈Uh(x0)

L‖x− x0‖β∞
[
z − L‖x− x0‖β∞

]
+
, z ≥ 0. (56)

The assertion of Theorem 3.2 follows from (13), (14), (52) and the following lemma.
Lemma A.2 : Assume that φ(x, x0) = L‖x − x0‖β∞ and that h ≥ c1n

−α with 0 ≤ α < 1
2β+2 and

c1 > 0, or h = c1n
− 1

2β+2 with c1 > c0 =
(
σ2(2β+2)(β+2)

8L2

) 1
2β+2

. Then

ah(x0) = c3n
−β/(2β+2)(1 + o(1)) (57)

and
J (w) ≤ c4n

− 2β
2+2β , (58)

where c3 and c4 are positive constants depending only on β, L and σ.
Proof : We first prove (57) in the case when h = 1, i.e. when Uh(x0) = Ω. By the definition of
a1(x0) (see (55)), we have

H1 (a1(x0)) =
∑
x∈Ω

[
a1(x0)− L‖x− x0‖β∞

]
+
L‖x− x0‖β∞ = σ2. (59)

Let h1 = (a1(x0)/L)1/β which implies a1(x0) = Lh
β
1 . The crucial point is the simple observation

that [
a1(x0)− L‖x− x0‖β∞

]
+

= 0 iff ‖x− x0‖∞ > h1. (60)

Using this equivalence, from (59), we obtain the following equation∑
‖x−x0‖∞≤h1

(
L2h

β
1‖x− x0‖β∞ − L2‖x− x0‖2β∞

)
= σ2, (61)

from which we will determine h1 and a1(x0). By the definition of the neighborhood Uh1(x0) it is
easy to see that

∑
‖x−x0‖∞≤h1

‖x− x0‖β∞ = 8N−β
Nh1∑
k=1

kβ+1 = 8N2h1
β+2

β + 2
(1 + o (1)) .

This formula also applies with β replaced by 2β, so that

∑
‖x−x0‖∞≤h1

‖x− x0‖2β∞ = 8N2 h
2β+2
1

2β + 2
(1 + o (1)) .

Therefore, (61) implies
8L2β

(β + 2) (2β + 2)
N2h

2β+2
1 (1 + o(1)) = σ2,
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from which we infer that
h1 = c0n

− 1
2β+2 (1 + o(1)) (62)

with c0 =
(
σ2(β+2)(2β+2)

8L2β

) 1
2β+2

. From (62) and the definition of h1, we obtain

a1(x0) = Lh
β
1 = Lcβ0n

− β
2β+2 (1 + o(1)),

which proves (57) in the case when h = 1.
We next prove (57) for c1n

−α ≤ h < 1, where 0 ≤ α ≤ 1
2β+2 and c1 > 0 if α < 1

2β+2 , c1 > c0

if α = 1
2β+2 . It is clear that h ≥ h1 = c0n

− 1
2β+2 (1 + o(1)) for n sufficiently large. Using again the

equivalence (60) we see that

H1 (a1(x0)) = Hh (a1(x0)) = Hh1
(a1(x0)) = σ2,

which proves that a1(x0) is also the solution of (55) for c1n
−α ≤ h < 1. From this equality we

deduce (62) as in the case h = 1.
We finally prove (58). Assume that h satisfies c1n

−α ≤ h ≤ 1, where, as before, 0 ≤ α ≤ 1
2β+2

and c1 > 0 if α < 1
2β+2 , c1 > c0 if α = 1

2β+2 . Denote for brevity

Gh =
∑

‖x−x0‖∞≤h

[
h
β
1 − ‖x− x0‖β∞

]
+
.

Since h ≥ h1 for n sufficiently large, using the equivalence (60), we haveHh (a1(x0)) = Hh1
(a1(x0)) =

σ2 and Gh = Gh1 . Thus, from (53) and (54), it follows that

J (w) =
Hh1

(a1(x0))2 + σ2
∑
‖x−x0‖∞≤h1

[
a1(x0)− L‖x− x0‖β∞

]2

+

L2G2
h1

=
σ4 + σ2

∑
‖x−x0‖∞≤h1

(
a1(x0)− L‖x− x0‖β∞

)2

L2G2
h1

,

where to obtain the last line we use the fact that a1(x0) = Lh
β
1 . Developing the square and using

a1(x0) = Lh
β
1 we obtain∑

‖x−x0‖∞≤h1

(
a1(x0)− L‖x− x0‖β∞

)2

= a1(x0)L
∑

‖x−x0‖∞≤h1

(
h
β
1 − ‖x− x0‖β∞

)
−

∑
‖x−x0‖∞≤h1

(
L2h

β
1‖x− x0‖β∞ − L2‖x− x0‖2β∞

)
= a1(x0)LGh1 − σ

2,

where the last step holds from the definition of Gh and (61). Therefore

J (w) =
σ2

L

a1(x0)

Gh1
.
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Since

Gh1 =
∑

‖x−x0‖∞≤h1

(h
β
1 − ‖x− x0‖β∞) = h

β
1

∑
1≤k≤Nh1

8k − 8

Nβ

∑
1≤k≤Nh1

kβ+1

=
4β

β + 2
N2h

β+2
1 (1 + o (1)) =

4β

(β + 2)L1/β
N2a1(x0)(β+2)/β (1 + o (1)) ,

taking into account that N2 = n (by definition of n), we obtain

J (w) = σ2 (β + 2)

4β
L1/β−1a1(x0)

− 2
β

N2
(1 + o (1))

= c
n

2
2β+2

n
(1 + o (1)) = cn

− 2β
2β+2 (1 + o (1)) ,

where the constant c depends only on β, L and σ. �
Proof of Theorem 3.2. Assume that φ (x, x0) ≤ α |f (x)− f (x0)|+δn As (a+b)2 ≤ 2a2 +2b2,

we have  ∑
x∈Uh(x0)

w(x, x0)φ(x, x0)

2

≤

 ∑
x∈Uh(x0)

w(x, x0)(α|f(x)− f(x0)|+ δn)

2

≤ 2α2

 ∑
x∈Uh(x0)

w(x, x0)|f(x)− f(x0)|

2

+ 2δ2
n.

Hence Jφ(w) ≤ max{1, 2α2}J (w) + 2δ2
n. So using (13) and setting w = arg minw J (w), we get

E (f∗h(x0)− f(x0))2 ≤ min
w
Jφ(w) ≤ Jφ(w) ≤ max{1, 2α2}J (w) + 2δ2

n. (63)

Therefore, by Lemma A.2 and the condition that δn = O
(
n
− β

2β+2

)
, we obtain

E (f∗h(x0)− f(x0))2 = O
(
n
− 2β

2β+2

)
,

which is just (37).

A.3 Proof of Theorem 3.3

We first prove the following result which shows that, with a proper choice of the search window
size h and of the patch size η, there are two constants 0 < α1 < α1 < ∞ such that, the quantity
φv(x, x0) defined by (24) lies between α1|f(x)−f(x0)|2 and α1|f(x)−f(x0)|2 with high probability
and with an error term δn = O

(
n
− β

2+2β

)
, where n = card(Ω) = N2.

Proposition A.3 : Assume that f satisfies the local Hölder’s condition (34) and that h = c1n
− 1

2β+2

with c1 sufficiently large : c1 > c0 =
(
σ2(β+2)(2β+2)

8L2β

) 1
2β+2 . Assume also that η = c2n

−α for some
1

2(β+1)2
< α < 1

2β+2 and c2 > 0. Then there exist constants α1, α1 > 0 and c3 > 0 depending only
on β, L, σ and c1, c2, such that

lim
n→∞

max
x0∈Ω

max
x∈Uh(x0)

P
{
φv(x, x0)− α1|f(x)− f(x0)|2 ≤ c3n

− β
2+2β

}
= 1 (64)
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and
lim
n→∞

max
x0∈Ω

max
x∈Uh(x0)

P
{
α1|f(x)− f(x0)|2 − φv(x, x0) ≤ c3n

− β
2+2β

}
= 1. (65)

Using this proposition we easily prove Theorem 3.3. Indeed, from (64) and the bound

φ(x, x0) = |f(x)− f(x0)| ≤ L ‖x− x0‖β∞ ≤ L,

we obtain
lim
n→∞

max
x0∈Ω

max
x∈Uh(x0)

P
{
φv(x, x0) ≤ α0|f(x)− f(x0)|+ c3n

− β
2+2β

}
= 1, (66)

where α0 = αL, which is the assertion of Theorem 3.3.
Proof of Proposition A.3. For the simplicity we shall assume that the kernelK0 is rectangular,

the proof in the general case can be carried in the same way. Note that for the rectangular kernel
we have ‖v(x)− v(x0)‖2K0,2

= 1
m‖v(x)− v(x0)‖22. For convenience, for τ ∈ T , let

Λx0,x(τ) = f(x0 + τ)− f(x+ τ) (67)

and
ζx0,x(τ) = ε(x0 + τ)− ε(x+ τ). (68)

Recall that the size of the set T is the same as the size of the patch v(x) which is equal to
m = (2r + 1)2. For brevity set Λx0,x = Λx0,x(0) = f(x0)− f(x). Consider the estimator of Λ2

x0,x =
|f(x0)− f(x)|2 defined by

Λ̂2
x0,x =

1

m
‖v(x)− v(x0)‖22 − 2σ2. (69)

With these notations, using (1), we get a decomposition of the estimation error Λ̂2
x0,x − Λ2

x0,x into
a bias term and a stochastic error :

Λ̂2
x0,x − Λ2

x0,x =
1

m

∑
τ∈T

(v(x+ τ)− v(x0 + τ))2 − 2σ2 − Λ2
x0,x

=
1

m

∑
τ∈T

(Λx0,x(τ) + ζx0,x(τ))2 − 2σ2 − Λ2
x0,x

= Λ
2
(x0, x)− Λ2

x0,x + S(x0, x), (70)

where Λ
2
(x0, x)− Λ2

x0,x is the bias term with

Λ
2
(x0, x) =

1

m

∑
τ∈T

Λ2
x0,x(τ) (71)

and S(x0, x) = 1
mS(x0, x) is the stochastic therm with

S(x0, x) =
∑
τ∈T

(
ζ2
x0,x(τ)− 2σ2 + 2Λx0,x (τ) ζx0,x(τ)

)
. (72)

To handle the both terms in (70) we make use of the following two lemmas. The first one give
an estimate of the bias term Λ

2
(x0, x)− Λ2

x0,x.
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Lemma A.4 : Assume the local Hölder condition (34). Then, with h = k
N and η = r

N being the
widths of the search window Uh(x0) and of the patch v(x) respectively, we have, for any x0 ∈ Ω
and x ∈ Uh(x0), ∣∣∣Λ2

(x0, x)− |f(x)− f(x0)|2
∣∣∣ ≤ 4L2hβηβ.

Proof : Clearly

Λ
2
(x0, x)− |f(x)− f(x0)|2 =

1

m

∑
τ∈T

(
Λ2
x0,x(τ)− |f(x)− f(x0)|2

)
. (73)

For each τ ∈ T , we have

Λ2
x0,x(τ)− |f(x)− f(x0)|2 =

(
(f(x0 + τ)− f(x+ τ))2 − (f(x0)− f(x))2

)
= [f(x0 + τ)− f(x+ τ) + f(x0)− f(x)]

× [f(x0 + τ)− f(x0) + f(x)− f(x+ τ)] . (74)

Since ‖x− x0‖∞ ≤ h and ‖τ‖∞ ≤ η, from the local Hölder condition (34) we have

|f(x0 + τ)− f(x+ τ) + f(x0)− f(x)| ≤ 2L‖x− x0‖β∞ ≤ 2Lhβ (75)

and
|f(x0 + τ)− f(x0) + f(x)− f(x+ τ)| ≤ 2L‖τ‖β∞ ≤ 2Lηβ. (76)

From (73)-(76) we obtain the conclusion of the lemma. �
The second lemma will help us to give an estimate of the stochastic term 1

mS(x0, x), where we
recall that m is the size of the patch v(x).
Lemma A.5 : There are two positive constants c2 and c3, depending only on L and σ, such that,
for any x0 ∈ Ω, x ∈ Uh(x0) and any 0 ≤ z ≤ c2m

1/2,

P
(
|S(x0, x)| ≥ z

√
m
)
≤ c3z

−2.

Proof : By Chebyshev’s inequality,

P
(
|S(x0, x)| ≥ z

√
m
)
≤ Var(S(x0, x))

z2m
. (77)

To complete the proof it is enough to have a control of Var(S(x0, x)). For this, note that the variables
ζx0,x(τ), τ ∈ T , are Gaussian with Eζx0,x(τ) = 0 and finite variance Eζx0,x(τ) = 2σ2. Set for brevity

Xτ = Yτ + 2Λx0,x (τ) ζx0,x(τ), and Yτ = ζ2
x0,x(τ)− 2σ2, τ ∈ T ,

where the variables Yτ , τ ∈ T are identically distributed with mean EYτ = 0 and finite variance
EY 2

τ ≤ cσ4, where c is an absolute constant. With these notations we have S(x0, x) =
∑

τ∈T Xτ .
Moreover, the expectation of Xτ is zero, E(Xτ ) = 0, and using the obvious bound (u + v)2 ≤
2u2 + 2v2, for the variance of Xτ we have

EX2
τ ≤ 2EY 2

τ + 8Λ2
x0,x (τ)Eζx0,x(τ) ≤ 2cσ4 + 8L2σ2 ≤ b2, (78)

where Λ2
x0,x(τ) = |f(x+ τ)− f(x0 + τ)|2 ≤ L2 ‖x− x0‖2β∞ ≤ L2, and b is a constant depending only

on L and σ.
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The point in handling the sum S(x0, x) =
∑

τ∈T Xτ is that the variables Xτ , τ ∈ T , are not
necessarily independent. Remark that ζx0,x(τ) and ζx0,x(τ ′) are correlated if and only if τ − τ ′ =
±(x0 − x). Indeed, it can be easily checked that

E(ζx0,x(τ)ζx0,x(τ ′)) =


−σ2, if τ − τ ′ = x0 − x,
σ2, if τ − τ ′ = x− x0,
0, otherwise.

Since ζx0,x(τ) and ζx0,x(τ ′) are Gaussian random variables, this implies that if τ − τ ′ 6= ±(x− x0),
then ζx0,x(τ) and ζx0,x(τ ′) are independent. This implies that Xτ and Xτ ′ are also independent if
τ − τ ′ 6= ±(x− x0), and that, in particular, that E(XτX

′
τ ) = 0 if τ − τ ′ 6= ±(x− x0). Consequently

Var(S(x0, x)) = E(S(x0, x)2) =
∑
τ,τ ′∈T

E(XτXτ ′)

=
∑
τ∈T

E(X2
τ ) +

∑
τ∈T

∑
τ ′∈T :τ ′=τ±(x−x0)

E(XτXτ ′). (79)

By the Cauchy-Schwartz inequality and (78)

E(XτXτ ′) ≤ E1/2(X2
τ )E1/2(X2

τ ′) ≤ b2.

Implementing this into (79),

Var(S(x0, x)) ≤ mb2 + 2mb2 = 3mb2. (80)

The assertion of the lemma follows now from (77) and (80). �
Now we proceed to prove the assertion (64) of Proposition A.3. From (69), (70) and the inequality

[a− b]+ ≤ |a− b| = |a2−b2|
a+b for a, b > 0, we have

φv(x, x0) =
(
‖v(x)− v(x0)‖K0,2 −

√
2σ
)+

≤

∣∣∣‖v(x)− v(x0)‖2K0,2
− 2σ2

∣∣∣
√

2σ

≤ Λ
2
(x0, x)√

2σ
+

∣∣S(x0, x)
∣∣

√
2σ

.

By Lemma A.4 we have Λ
2
(x0, x) ≤ |f(x)− f(x0)|2 + 4L2hβηβ, so that

φv(x, x0) ≤ |f(x)− f(x0)|2 + 4L2hβηβ√
2σ

+

∣∣S(x0, x)
∣∣

√
2σ

. (81)

Now we shall control the stochastic term. Since η = c2n
−α (where 1

4β+2 ≤ α ≤ 1
2β+2), it follows

that the size m = (2Nη + 1)2 = (2
√
nη + 1)2 of the patch v(x) satisfies c−1

4 n1−2α ≤ m ≤ c4n
1−2α.

Applying Lemma A.5, we see that uniformly in x0 ∈ Ω and x ∈ Uh(x0),

P

(∣∣S(x0, x)
∣∣ ≥√ lnn

m

)
= P

(
|S(x0, x)| ≥

√
m lnn

)
≤ c3

lnn
. (82)
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Therefore, taking into account (81) and (82), we obtain that uniformly in x0 ∈ Ω and x ∈ Uh(x0),
with probability 1−O

(
1

lnn

)
,

φv(x, x0) ≤ |f(x)− f(x0)|2 + 4L2hβηβ√
2σ

+
c5

√
lnn

n1/2−α . (83)

Since h = c1n
−α and η = c2n

−α, we obtain uniformly in x0 ∈ Ω and x ∈ Uh(x0), with probability
1−O

(
1

lnn

)
,

φv(x, x0)− |f(x)− f(x0)|2√
2σ

≤ 4L2hβηβ√
2σ

+
c5

√
lnn

n1/2−α

≤ c6

n2αβ
+
c5

√
lnn

n1/2−α .

Taking into account that for α satisfying 1
4β+2 ≤ α ≤ 1

2β+2 , it holds 2αβ ≥ 1/2 − α, we have
uniformly in x0 ∈ Ω and x ∈ Uh(x0), with probability 1−O

(
1

lnn

)
,

φv(x, x0)− |f(x)− f(x0)|2√
2σ

≤ c7n
α− 1

2

√
lnn,

which proves (64).
For the second assertion (65) of the proposition we use a similar argument. From (70) and the

equality [a− b]+ = [a2−b2]+
a+b for a, b > 0, we have

φv(x, x0) =

[
1√
m
‖v(x)− v(x0)‖2 −

√
2σ

]
+

≥

[
Λ

2
(x0, x) + S(x0, x)

]
+√

Λ
2
(x0, x) + S(x0, x) + 2σ2 +

√
2σ

≥ Λ
2
(x0, x)− |S(x0, x)|√

Λ
2
(x0, x) + S(x0, x) + 2σ2 +

√
2σ

.

By Lemma A.4 we have

|f(x)− f(x0)|2 − 4L2hβηβ ≤ Λ
2
(x0, x) ≥ |f(x)− f(x0)|2 + 4L2hβηβ,

so that

φv(x, x0) ≥
|f(x)− f(x0)|2 − 4L2hβηβ −

∣∣S(x0, x)
∣∣√

|f(x)− f(x0)|2 + 4L2hβηβ + S(x0, x) + 2σ2 +
√

2σ
.

Recall that |f(x) − f(x0)| ≤ L ‖x− x0‖β∞ ≤ L. Using (82) and the above inequality, we see that,
with probability 1−O

(
1

lnn

)
,

φv(x, x0) ≥ c8|f(x)− f(x0)|2 − c8L
2hβηβ − c8n

α− 1
2

√
lnn.

As in the case of the upper bound, this implies that, with probability 1−O
(

1
lnn

)
,

φv(x, x0)− c8|f(x)− f(x0)|2 ≥ c9n
α− 1

2

√
lnn,

which proves (65). This ends the proof of Proposition A.3.
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