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Abstract

Most current functional Magnetic Resonance Imaging (fMRI) decoding analyses rely on statistical sum-
maries of the data resulting from a deconvolution approach: each stimulation event is associated with
a brain response. This standard approach leads to simple learning procedures, yet it is ill-suited for
decoding events with short inter-stimulus intervals. In order to overcome this issue, we propose a novel
framework that separates the spatial and temporal components of the prediction by decoding the fMRI
time-series continuously, i.e. scan-by-scan. The stimulation events can then be identi�ed through a de-
convolution of the reconstructed time series. We show that this model performs as well as or better than
standard approaches across several datasets, most notably in regimes with small inter-stimuli intervals
(3 to 5s), while also o�ering predictions that are highly interpretable in the time domain. This opens the
way toward analyzing datasets not normally thought of as suitable for decoding and makes it possible
to run decoding on studies with reduced scan time.

Keywords: Functional magnetic resonance imaging, Classi�cation analysis, MVPA, Decoding, Rapid
event-related design

1. Introduction

The application of multivariate analysis tech-
niques to fMRI datasets, aka decoding, has become
a popular approach to probe the relationships be-
tween stimuli and brain activity [20, 24, 14]. The5

very nature of fMRI data makes it a challenging
problem: relatively few samples (events or blocks
corresponding to stimulus presentation) are avail-
able, in comparison with the high dimensionality
{number of voxels{ of each observation. This mis-10

match leads to the so-called curse of dimensional-
ity : learning distributed patterns from few samples
is a hard problem. The power of high-dimensional
regression methods is thus needed to achieve high
accuracy and return an interpretable discriminative15

pattern (see e.g. [5]). However, the sluggishness
of the Blood-Oxygen-Level-dependent (BOLD) re-
sponse observed in fMRI implies that the occur-
rence of brain activity is not synchronous with the

presentation of stimuli, but delayed by approxi- 20

mately 6s and smooth in time [9]. For the sake of
statistical analysis, a preliminary regression step is
thus typically performed, so that pairs of stimulus
events and associated brain response can be consid-
ered. This prior regression is simply carried out by 25

the traditional General Linear Model (GLM) used
in standard statistical analyses of fMRI [8].

Although it is the standard solution used by
nearly all practitioners, this two-step approach is
not optimal; in particular, the intermediate event- 30

related brain response estimates are very noisy, lim-
iting decoding accuracy. The reason is that, un-
like traditional brain mapping settings in which
all events from one condition end up being one
single regressor, for decoding purpose, events are 35

split into di�erent regressors, resulting in a loss
in design e�ciency and high-variance estimates.
This approach is also bound to perform poorly on
event-related tasks using small inter-stimuli inter-
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vals (ISIs): the overlap in the hemodynamic re-40

sponse functions (HRFs) coupled with the acquisi-
tion noise lead to ill-estimated event-related brain
responses and harm subsequent classi�cation accu-
racy. In this work, we investigate a novel inference
scheme that swaps the two steps: we propose to45

perform the challenging and expensive estimation
of the discriminative pattern in the time frame of
the slow BOLD response. For this we substitute the
standard classi�cation problem with one where the
prediction target is a model of BOLD activity that50

includes the hemodynamic delay and blurring: we
call this approach time-domain fMRI decoding. By
nature, this approach uses the fMRI data to build a
predictor of the convolved stimulus function; then
a second step is necessary to go from condition-55

speci�c time courses to the identi�cation of events.
Given the estimated time course of several condi-
tions during an acquisition, we use a second predic-
tive model to decide which stimulus was presented
at a given time. The key point is that this learning60

problem is easy, as it boils down to selecting a de-
convolution �lter and applying a relatively simple
selection mechanism.

The expected bene�t of this approach is to re-
main tractable whenever the ISI is short (3s to 5s).65

The promise of decoding with shorter ISIs is to opti-
mize scanning e�ciency: it allows for either reduc-
ing scan duration, leading to cheaper acquisitions
and less taxing on subject’s attention, or alterna-
tively for keeping scan durations unchanged and70

acquiring more data per experiment.

Figure 1: Schema of the GLM approach to decoding.
A design matrix representing ideal task responses is used to
derive event-speci�c activation estimates. These estimates
are then used in a classi�cation setting.

In the sequel, we describe the so-called time-
domain decoding framework, and present experi-
ments to compare it with state-of-the-art alterna-
tives: the standard GLM-based regression, the so- 75

called separate GLM approach and spatio-temporal
analysis schemes. The fMRI datasets used for vali-
dation were chosen so as to represent a wide range
of experimental settings, with block and event-
related designs, the latter with ISIs ranging from 80

1.6 to 11.5s. We illustrate accuracy gains in these
di�erent settings. Before describing in detail the
time-domain decoding approach and our experi-
ments, we review state-of-the-art solutions.

2. Prior Work 85

Most decoding studies today are done �tting a
�rst-level GLM regression: a design matrix X is
created having as columns the timing of the exper-
imental events, convolved with a canonical HRF
model, and possibly additional columns to capture 90

nuisance e�ects. Such an approach is illustrated in
Figure 1. A crucial fact is that events correspond-
ing to the same condition are disseminated into dif-
ferent columns, leading to poor (high-variance) per-
trial activation estimates. 95

The activation coe�cients are then estimated by
solving the X� = Y regression problem, where Y
are the BOLD data, written as a (time, voxel) ar-
ray. The resulting least-squares estimates �̂ for ac-
tivation coe�cients have one value per voxel, hence 100

they make up brain images, one image per event.
Data classi�cation is then performed by �tting a
classi�er to these activation maps: each activation
image �̂i is associated with a label li, that indexes
the cognitive condition corresponding to this event. 105

Multivariate inference typically proceeds by esti-
mating a function that predicts l given �̂: this func-
tion is a classi�er (support vector machine, or logis-
tic regression model) when the labels (li)i=1::I are
discrete, or a regression function when the (li)i=1::I 110

are continuous.
To summarize, this approach entails three esti-

mation challenges:

� The one-event-per-column design is statisti-
cally ine�cient [22]. 115

� Curse of dimensionality: decoding is per-
formed on brain-wide maps estimated based
on a limited number of samples.
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Figure 2: Schema of the time-domain decoding model. Straight arrows represent generative steps, while curved ones
represent estimation steps.

� When trying to decode events with small ISIs,
the regressors (Xi)i=1::I used in the initial re-120

gression become highly correlated, thus ren-
dering the �rst-level estimation ill-posed.

The so-called separate GLM or GLMs approach [19]
has been proposed as a means of tackling the �rst
and third issues: it is analogous to the GLM, only a125

separate design matrix X(i) is built for deconvolv-
ing each trial i. These separate design matrices
only have two columns (besides confounds): one
for the stimulus regressor and one for the sum of
all other regressors. The activation map for event i130

is obtained by solving X(i)�i = Y, and the classi-
�cation is then done through logistic regression on
(�i; li)i=1::I as in the usual setting.

One thing that the GLM and GLMs approaches
have in common is that they proceed by isolat-135

ing temporal features in order to create activation
maps. This is typically done by assuming a stan-
dard or canonical HRF model. Yet, extensions to
data-driven approaches have been proposed in that

framework [23][21], using �nite impulse response �l- 140

ters. It should however be noted that these data-
driven models require lots of stimulus occurrences,
as they need to estimate regression coe�cients in
each voxel. Again, this types of model err on the
large-variance side, given that a great number of 145

coe�cients are estimated per voxel.

Instead of isolating temporal features and decod-
ing over activation maps, a di�erent approach is
to perform classi�cation in the time domain. To
capture the information from fMRI time series di- 150

rectly, the so-called Spatiotemporal SVM approach
has been proposed [18], in which, for each event
i, a vector Yi is created by concatenating BOLD
scans in a time-window following the stimulus on-
set. Classi�cation is then performed by �tting a 155

linear SVM over these concatenated vectors. While
this approach nicely bypasses the prior speci�cation
of an HRF, it makes the problem worse regarding
the "curse of dimensionality" (second issue outlined
above): the number of features in the BOLD sig- 160
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nal is multiplied by the length of the time window,
thus rendering the classi�er �tting problem even
more ill-posed.

3. Time-domain decoding: a two-step ap-
proach165

3.1. Motivation

One way of overcoming the dimensionality and
e�ciency issues with decoding procedures is to
swap the spatial and the temporal estimation prob-
lems, by applying the time-lagged analysis in a low-170

dimensional space. This is the basis for the method
proposed here.

3.2. Model

The Time-domain decoding method (3.2) �rst re-
covers the class-speci�c BOLD time courses to then175

assigns a class label to events. It comprises two
steps:

1. Regression of the class-by-class convolved
events time-series;

2. Classi�cation of the stimulus occurrences180

based on time windows extracted from the re-
gressed time-series.

More formally, let X be the design matrix of size
(number of scans � number of stimulus classes),
containing in each column the time-series for each
stimulus class already convolved by an HRF model.
Importantly, all the events of any given class are
gathered into a single regressor. Let us note the
BOLD signal matrix by Y. It is assumed that high-
pass �ltering and motion parameter regression have
been performed as a preprocessing step on Y . The
data can be divided (across sessions) into train and
test subsets Ytrain and Ytest, the corresponding
design matrices being Xtrain and Xtest; the spa-
tial step consists in solving a regularized regression
problem (written here with a Ridge penalty):

B̂ = argmin
B

n
kXtrain �YtrainBk2 + � kBk2

o
;

eXtest = YtestB̂; (1)

where � is a positive scalar to be speci�ed; in the
experiments described in this paper, it is set by
nested cross-validation (for more details, see Annex185

A). Note that B is a (nvoxels � nconditions) matrix
similar to a standard parameter matrix.

Once an estimate eXtest is obtained, the temporal
step classi�es each onset using a time window of t
scans. Thus, if we denote by extest[i:i+t] the vector 190

formed by concatenating the rows from i to i + t
of eXtest, the temporal step consists in determining,
for each onset time i, its corresponding class label
li. This is done by multiclass logistic regression:

li = argmax
cj ;j2[[1;nclasses]]

n
logit(< ŵcj ; extest[i:i+t] > +b̂cj )

o
;

(2)
where ŵcj and b̂cj are computed for each class cj 195

by maximum likelihood estimation. Note that the
number of weight coe�cients estimated in this step
is only t times the number nclasses of classes.

This can be seen in the following manner: the
�rst step (eq. 1) handles the decoding problem as a 200

regression task, in which the strength of the hemo-
dynamic response to each class is �tted by a regu-
larized linear regression model over the BOLD sig-
nal on a scan-by-scan basis. Note that this �rst step
relies on a �xed HRF model. In practice we chose 205

the canonical double-gamma function of SPM.
The second, temporal step (see eq. 2 and �gure

3) extracts from all classes’ predicted time-series a
time-window for each onset, and feeds them to a
logistic regression model that works as a deconvo- 210

lution �lter for classifying the onset. The time-
window length is de�ned heuristically using the
canonical time dynamics of the HRF.

4. Experiments

4.1. Models 215

We compared the following classi�cation meth-
ods: GLM, GLMs, Spatiotemporal SVM and Time-
domain decoding described in Sections 2 and 3.
Comparisons are presented on 4 datasets. We pro-
vide also simulations in appendix (section 7) that 220

reproduce the results on fMRI datasets.
For the time-based models (Spatiotemporal

SVM, Time-domain decoding), the time windows
were chosen as the closest possible interval to the
2-8s range for event-related design datasets to en- 225

sure a good �t of the peak of the canonical HRF,
and as the length of the block for datasets with a
block design; we present in the annex some data to
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Figure 3: Illustration of time-domain decoding on
real data using the Mirror-reversed text dataset (see Sec-
tion 4.3): starting from the BOLD signal, the time-series
are estimated for the two classes (’Plain’ and ’Mirror’) that
are the two main conditions. Next, at each stimulus onset,
a logistic regression is applied to a time-window in order to
classify it. The class probabilities for each onset are shown
in the middle graph, with a baseline of 50% at chance; the
direction shows which class is predicted as being more likely;
the length of the bars encodes the decision con�dence and
their color represents the correctness of that prediction.

discuss the choice of time-window in model perfor-
mance in a post-hoc experiment (Fig. 11).230

4.2. Simulation study

We performed a simulation study to assess the
impact of ISI on model performance in a controlled
setting. We generated data using a model of the
form Y = X� + �:235

� The design matrix X, of shape
(number of scans � 2), was created by
convolving stimuli randomly assigned to one
of two classes, separated by the ISI chosen for
the session. As in the real data studies, we240

use the HRF model of [9]. We chose a number
of scans of 1000 for the ISI=5s condition
(as an approximation for the concatenation
of the number of scans across all runs in a
real experiment), and then adjusted for the245

other classes so as to have balanced number

of stimuli for each ISI length (thus yielding
800 scans for ISI=4s and 600 for ISI=3s). We
can note that, given a TR of 2s, this would
correspond to 33 minutes of scanning time for 250

the 5s ISI, 26 minutes for the 4s ISI and 20
minutes for the 3s one (not counting resting
intervals).

� For the two classes �, we created the activa-
tion maps, a matrix of shape (2 � 10000), by 255

drawing their coe�cients from a multivariate
normal distribution N (3; �2

�I), where �� was
set to :5. We chose both the mean and the
standard deviation as in the simulation study
in [19]. The number 10000 for the features 260

was chosen so as to reect the number of fea-
tures chosen by ANOVA variable selection in
the real data studies.

� We generated the noise �, a matrix of shape
(number of scans� 10000), from an i.i.d. nor- 265

mal distribution N (0; �2
� ), where �� was set

to 1:6, again as in [19]. We then smoothed
the noise both temporally and spatially using
a Gaussian �lter with unit standard deviation,
which led to an average standard deviation of 270

approximately 0.72 for � across simulations.

We set the TR to 2 seconds and test ISIs of 3,
4, and 5 seconds. Results for activation map cor-
relations of 0, 0.3 and 0.6 are also shown in 7. For
each ISI and correlation, we run 100 simulations, in 275

which we generate both a train and a test set with
the procedure described above.

4.3. Real data

In order to probe di�erent timing intervals
and decoding complexity levels, we considered 4 280

datasets:

� The Haxby dataset [13] yields a study of face
and object representations in human ventral
temporal cortex, with 6 subjects and 12 runs
per subject. Stimuli consisted of greyscale im- 285

ages from eight di�erent classes: faces, cats,
houses, chairs, scissors, shoes, bottles and
scrambled images, and we considered the 8-
class classi�cation problem. Images for each
class were shown during 24s, followed by 12s 290

of rest; TR=2.5s, ISI=36s;
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� The Mirror-reversed text [15] dataset yields
a study of the neural basis of task-switching,
with 14 subjects and 6 runs per subject. Stim-
uli were words shown in either plain or mirror-295

reversed fashion, coupled with a semantic clas-
si�cation task. The design is event-related,
with TR=2s and ISI=4-11.5s.

� The Textures dataset [6] yields a study of re-
sponses to textures along di�erent regions of300

interest in the brain, with 4 subjects undergo-
ing a total of 7 acquisitions (3 subjects hav-
ing gone through two acquisitions), with 6
runs per acquisition. Stimuli were greyscale
texture images from 6 di�erent classes in the305

UIUC texture database [17], appearing during
three ashes of 200ms, separated by 200ms
grey screen, so that an event duration is 1s.
These images were shown in pairs separated
by 4s followed by a probe after which the sub-310

ject had to decide which of the �rst two the
third image shown was extracted from. The
design is event-related design, with TR=2.4s
and ISI=4-8s.

� The Temporal tuning dataset [10] yields a315

study of rate-dependence of neural responses,
with 11 subjects and 12 runs per subject.
Greyscale images of faces and houses were
shown in alternating fashion during 20s blocks,
followed by 10s of rest. The design is event-320

related, with TR=1.5s and ISI=1.6, 3.2 or 4.8s.

Performance was analyzed in a within-subject
setting. The cross-validation method used was
Leave-one-session-out for Mirror-reversed text and
Textures, and Leave-two-sessions-out for Haxby and325

Temporal tuning (based on the heuristic of having
approximately 20% of the data in the test set).
Cross-validation on the Temporal tuning dataset
also followed a class-rebalancing scheme described
in detail in section 7. We used classi�cation accu-330

racy of the events as the evaluation metric. One
score was computed per cross-validation step, and
signi�cance of mean accuracy di�erence between
methods was tested using paired t-tests.

4.4. Implementation335

The analyses were performed in Python using
the module Nilearn version 0.2.6, with Scikit-learn

version 0.17.1 and Numpy version 1.11.3. Statisti-
cal analyses were performed using Nistats version
0.1.0, using the SPM model for the HRF. Plots were 340

created using Matplotlib version 1.5.1 and Seaborn
version 0.7.1. An implementation of the analysis for
the public Haxby dataset can be found at https:
//github.com/joaoloula/time_decoding.

5. Results 345

Fig. 4 shows the results of the simulation
study with no correlation between activation maps.
The simulation suggests greater performance of
the Time-domain decoding method over alterna-
tives for this controlled environment, particularly 350

for small ISIs.

Figure 4: Simulation study showing the prediction
accuracy for varying ISIs. The dotted line represents
the chance level (50%).

For the real data, the relative accuracies for all
methods on the Haxby, Mirror-reversed text and
Texture decoding datasets are presented in Figure
5. 355

� On the Haxby dataset, Time-domain decoding
outperforms all other methods (p < 10�10, un-
corrected), showing that it does well in tradi-
tional block designs. We can also see that this
is the dataset in which Spatiotemporal SVM 360

has its worst relative performance : th is is
most likely an e�ect of the curse of dimension-
ality, given that the time-window is largest in
this dataset. The (across methods) mean ac-
curacy is 49% and the chance level is 12.5%; 365

� On the Mirror-reversed text dataset, Time-
domain decoding outperforms GLM (p <
10�9, uncorrected), and is outperformed by
Spatiotemporal SVM (p < 10�3, uncorrected).
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The mean accuracy is 76% and the chance level370

is 50%.

� On the Texture decoding dataset, Time-
domain decoding outperforms GLM (p <
10�8, uncorrected) and Spatiotemporal SVM
(p < 10�7, uncorrected) and is outperformed375

by GLMs (p < 0:05, uncorrected). The mean
accuracy is 43% and the chance level is 16.7%.

In Figure 6, we give results on the Temporal tun-
ing dataset: the accuracies for each method, ob-
tained through the cross-validation procedure de-380

scribed in 7, are shown separately according to the
test-set ISI, which can be of 1.6, 3.2 or 4.8 seconds.

� When ISI=1.6 seconds, no method performs
signi�cantly better than chance;

� When ISI=3.2 seconds, Time-domain decoding385

outperforms GLMs (p < 10�6, uncorrected);

� When ISI=4.8 seconds, Time-domain decod-
ing signi�cantly outperforms GLM (p < 0:05,
uncorrected), GLMs (p < 10�4, uncorrected)
and Spatiotemporal SVM (p < 10�6, uncor-390

rected).

The fact that GLMs is outperformed by GLM
for small ISIs in this dataset is most likely a con-
sequence of high inter-trial variability (see [1]).
The simulations results presented in section 7 con-395

�rm the superiority of the time-domain decoding
method for ISIs of 3s to 5s.

Finally, Figure 7 shows the activation maps ob-
tained for all methods on the Face vs. House task
on the Haxby dataset. We can see that the maps400

for the four methods are highly similar: this indi-
cates that the prediction problem as posed by the
Time-domain decoding method still yields mean-
ingful brain maps.

6. Discussion405

Our experiments on the simulated data and four
di�erent real datasets establish clearly that the
Time-domain decoding method performs as well as
or better than state-of-the-art approaches. It does
so in spite of the di�erences between datasets with410

respect to their timing characteristics. Put di�er-
ently, this means that this approach is a safe default
choice for the sake of decoding performance.

Figure 5: Subject-by-subject accuracy comparison
between GLM, GLMs, Spatiotemporal SVM and
Time-domain decoding across all datasets. Only the per-
fold accuracy di�erence between methods is plotted in these
�gures: the dotted line represents the per-fold mean perfor-
mance across methods. The mean accuracies (chance lev-
els) are respectively: 49% (12.5%) on Haxby, 76% (50%) on
Mirror-reversed text and 43% (16.7%) on Textures.

The results on the Temporal Tuning dataset are
of particular interest: though extremely small ISIs 415

degrade the performance of all methods to chance
level, with an ISIl of 3.2s, Time-domain decoding
outperforms GLMs and Spatiotemporal SVM, and
at 4.8s it outperforms all other methods. With re-
spect to the Spatiotemporal SVM, in particular, we 420

con�rm that Time-domain decoding does not suf-
fer from the additional ill-posedness inherent to the
strategy that augments the dimension of the input
space. The direct implication of this result is that
decoding becomes usable for ISIs as low as 3-4s, 425

without jeopardizing too much prediction accuracy.
This is thus a useful contribution toward cheaper,
less demanding experiments for participants and
opens the possibility to re-analyze existing datasets
that have not been designed for decoding purposes. 430

More in detail, the �rst step of the Time-domain
decoding uses a pre-de�ned HRF at learning time
(to form the time courses used to train the spatial
decoder), while the second step does not rely on a
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Figure 6: Accuracy comparison between GLM, GLMs, Spa-
tiotemporal SVM and Time-domain decoding across di�er-
ent ISIs on the Temporal tuning dataset.

temporal model. Our experience is that the proce-435

dure is robust to the choice of convolution model
amongst canonical options e.g. using the canonical
SPM response [7]. On the other hand, the decon-
volution is a very sensitive step: in particular we
have considered using model-based deconvolution440

instead of temporal decoding as in Eq. 2 {actually
inverting a canonical generative model of the data{
but this systematically lead to poorer predictions.
The Time-domain decoding is also of a di�erent na-
ture than other spatio-temporal methods such as445

the one presented in [16], that tackle the question
of decoding without timing information as opposed
to that of separating stimuli in rapid succession.
Notably, the total activation approach leverages a
prior on neural events timing (minimization of the450

discontinuities) that is not used here.
It is worth noting that the Time-domain decod-

ing method is distinct from HRF estimation ap-
proaches, as it does not aim at recovering the ac-
tual HRF that couples neural reponses with BOLD455

signals (an HRF model is used only in the �rst
step to set Xtrain ): no physiological model is es-
timated, and instead, the convolution �lter is han-
dled in the temporal step as a nuisance factor that
simply needs to be inverted. In this respect, the460

presented approach is a discriminative rather than
a generative model. In particular, while the HRF
is likely to vary across brain regions [4, 21, 2], the
temporal deconvolution performed in this work is
an abstract, location-free �lter estimate. Critically,465

it may not correspond to the local signal model of
any brain region, although it can be interpreted as
an inverse �lter of the average HRF.

Aside from performance, two advantages of the
Time-domain decoding model are worth pointing470

out:

Figure 7: Activation maps for Face vs. House classes
on the Haxby dataset for subject 2 for all models, shown
at a 99.5% percentage threshold of signal strength. Since
Spatiotemporal SVM produces a map for each scan in the
time window (10 in the case of the Haxby dataset), we
present only 3 maps corresponding to the timepoints of 2, 4
and 6s. We note the similarity between the maps, namely
in the activation of the Fusiform Face Area: this seems to
indicate that the regression problem posed by Logistic Re-
gression yields meaningful maps.

� The decoupling of the spatial and temporal
steps makes the method modular, and there-
fore particularly well-adapted to the substitu-
tion of richer models at each step. Possibilities 475

include performing the spatial regression step
using a spatially-regularized Graph-Net [12] or
TV-L1 model [3] [11], or performing the low-
dimensional deconvolution with another clas-
si�er such as Random Forest. 480

� The introduction of time-series for each class
as an intermediary prediction step provides
useful time-domain interpretability: a misclas-
si�cation can be traced back to the time-series
(see for example Figure 3). Notably, brain ac- 485

tivations for each class can be tracked through-
out scan times, allowing one to observe the ef-
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fects of rivaling class-speci�c time courses and
signal strength on decoding performance.

Finally, it should be noted that the use of Time-490

domain decoding can enhance the consequence of
bad experimental design: if there exists a time-
domain dependency between the occurrence of the
di�erent classes, it is possible that the model will
capture those characteristics rather than meaning-495

ful cognitive features. Its use can therefore only be
recommended on datasets with properly random-
ized events.

7. Conclusion

We presented the Time-domain decoding method500

for multivariate fMRI data decoding, which allows
for e�cient decoding with smaller ISIs than the
state of the art, and is exible to HRF variations.
By design, it avoids the computational burden asso-
ciated with time embedding approach used so far505

in the so-called spatio-temporal hrf model. The
method is modular in nature, with weakly cou-
pled spatial and temporal steps, and o�ers inter-
pretability in the time domain. It has been shown
to perform robustly on four di�erent datasets, and510

to outperform alternatives in a short-ISI dataset.
Code implementing the method as well as exam-
ples on the Haxby dataset can be found at https:
//github.com/Joaoloula/time_decoding.
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Annex A: Cross-validation scheme for the
Temporal tuning dataset

The Temporal tuning dataset contains stimuli660

with ISIs of 4.8, 3,2 and 1.6 seconds. The experi-
ment design, however, makes it so that these stim-
uli are not balanced: trials occur in blocks in which
"Face" and "House" conditions are alternated with
a given rate, making small ISI trials more numerous665

than larger ISI ones, as seen in Figure 8. To avoid
biases introduced by the di�erent number of sam-
ples, we subsampled the most frequent categories
in order to achieve a balance in the number of ex-
amples for each ISI.670

Figure 8: Event structure of the Temporal tuning
dataset. Images of faces and houses were shown in alterna-
tion during continuous 20s blocks separated by 10s of rest.
The ISI for each of these blocks was set to either 4.8, 3.2
or 1.6 seconds. It should be observed that this leads to an
overabundance of trials with small ISI with respect to larger
ISI ones: this makes rebalancing in the cross-validation nec-
essary (see main text). Adapted from [10].

With these considerations, the cross-validation
procedure performed was the following:

1. Di�erent subsets of the 1.6s and 3.2s ISI stim-
uli are created, each containing the same num-
ber of examples as the set of 4.8s stimuli (which675

is the smallest group of the three, with 4 stim-
uli per block);

2. For each of these subsets, 20% of the data are
left out in the validation set; the rest consti-
tutes the decoding set. On the decoding set,680

a nested cross-validation loop is used to de�ne
the Ridge regression constant for the Logistic
Regression model, as visualized in Figure 9.

Figure 9: Nested cross-validation procedure for the
Logistic Regression model. For each of the balanced sub-
sets of the data, an inner CV loop is used to determine the
Ridge hyperparameter while an outer one is used to assess
model performance for each ISI.

Annex B: Simulation Study

In the context of the simulation study described 685

in section 4.2, we also checked the inuence of the
correlation between activation maps on model per-
formance. The setting is the same as in section 4.2,
but now the distribution from which the activation
maps are drawn has a non-trivial correlation struc- 690

ture �2
beta(I+Cor), where Cori;j = c if the features

i and j correspond to the same voxel across the two
maps and Cori;j = 0 otherwise. The value of c was
made to vary between 0, 0.3 and 0.6, and for each
ISI-correlation pair 100 simulations were run. The 695

results are shown in �g 10.
We observe that, while higher correlation de-

creases performance across all methods (as ex-
pected), it does so in a non-homogeneous way: no-
tably, while tests with low correlation show that 700

Time-domain decoding outperforms all other meth-
ods, with a correlation of 0.6 the performance is
mostly uniform across the four models. This indi-
cates that Time-domain decoding does not address
the issue of ill-posed spatial pattern estimation. 705

Annex C: Time window length analysis

In order to study the inuence of the time-
window length parameter on the performance of
the temporal step of the Time-domain decoding
method (as described in section 3) we performed 710

tests on the Haxby dataset using 5 di�erent win-
dow lengths: 2.5, 5, 7.5, 10 and 20 seconds, the �rst
4 centered around the canonical peak for the HRF
(around 5 to 6 seconds after the stimulus onset),
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Figure 10: Prediction accuracy for varying ISIs and
between-map correlations (simulated data) . The dot-
ted line represents the chance level (50%). Correlations de-
grade the accuracy obtained, but perserves the relative per-
formance of the methods.

and the 20s window beginning at the stimulus on-715

set. These are equivalent respectively to one, two,
three, four and eight scans: for the case with one
scan, we performed classi�cation by simply taking
the label to be the one with maximum activation for
that scan. The performance was measured across720

all 8 classes on the Haxby dataset, and the cross-
validation procedure used was the same as the one
in the previous experiments.

The accuracy metric across these di�erent win-
dow lengths gives an indication of how variations in725

the time-window size a�ect decoding performance:
as we can see, though performance is high across all
windows, there is a high increase in the 7.5s window
relative to the smaller ones. In particular, we notice
that the decoder that only uses the maximum ac-730

tivation at one timestep for classi�cation (the 2.5s
window decoder) fails to achieve the performance of
the time-domain decoding methods for longer time-
windows, attesting the utility of the logistic regres-
sion as a time-domain deconvolution step. Given735

the notable ISI on the Haxby dataset, we see steady
increase in accuracy with time-window length satu-

rating around 10s, while doubling the length to 20s
has almost no impact on performance.

Figure 11: Impact of the time-window length on the
performance of the Time-domain decoding method
in the Haxby dataset. One can see that the jump from 5s
to 7.5s lenght (2 to 3 scans) yields great improvement in
performance, and that there is generally steady increase in
accuracy with time-window length, saturating at around 10s.
Recall that chance is 1=8 = :125.
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