H. Abdulrahman and R. N. Henson, Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis, NeuroImage, vol.125, pp.756-766, 2016.
DOI : 10.1016/j.neuroimage.2015.11.009

S. Badillo, T. Vincent, and P. Ciuciu, Grouplevel impacts of within-and between-subject hemodynamic variability in fmri, NeuroImage, vol.530, issue.82, pp.433-448, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854481

L. Baldassarre, J. Mourao-miranda, and M. Pontil, Structured Sparsity Models for Brain Decoding from fMRI Data, 2012 Second International Workshop on Pattern Recognition in NeuroImaging, pp.5-8
DOI : 10.1109/PRNI.2012.31

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.377.387

P. Ciuciu, J. Poline, G. Marrelec, J. Idier, C. Pallier et al., Unsupervised robust nonparametric estimation of the hemodynamic response function for any fmri experiment, IEEE Transactions on Medical Imaging, vol.22, issue.10, pp.1235-1251, 2003.
DOI : 10.1109/TMI.2003.817759

URL : https://hal.archives-ouvertes.fr/cea-00333694

D. D. Cox and R. L. Savoy, Functional magnetic resonance imaging (fMRI) ???brain reading???: detecting and classifying distributed patterns of fMRI activity in human visual cortex, NeuroImage, vol.19, issue.2, pp.261-270, 2003.
DOI : 10.1016/S1053-8119(03)00049-1

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith et al., Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, vol.26, issue.4, pp.189-210, 1994.
DOI : 10.2307/1427576

K. J. Friston, P. Jezzard, and R. Turner, Analysis of functional MRI time-series, Human Brain Mapping, vol.12, issue.2, pp.153-171, 1994.
DOI : 10.1038/jcbfm.1992.127

B. Gauthier, E. Eger, G. Hesselmann, A. Giraud, A. Kleinschmidt et al., Temporal tun- 575 ing properties along the human ventral visual stream Identifying predictive regions from fmri with tv-l1 prior, Proceedings of the 2013 International Workshop on Pattern Recognition in Neuroimaging, PRNI '13, pp.14433-14441, 2012.
DOI : 10.1523/jneurosci.2467-12.2012

URL : https://archive-ouverte.unige.ch/unige:26288/ATTACHMENT01

L. Grosenick, B. Klingenberg, K. Katovich, 5. B. Knutson, J. E. Taylor et al., Interpretable whole-brain prediction analysis with GraphNet, NeuroImage, vol.72, issue.293, pp.304-3212425, 2001.
DOI : 10.1016/j.neuroimage.2012.12.062

URL : http://doi.org/10.1016/j.neuroimage.2012.12.062

J. Haynes and G. Rees, Decoding mental states from brain activity in humans, Nature Reviews Neuroscience, vol.16, issue.7, pp.523-534, 2006.
DOI : 10.1520/JFS14925J

K. Jimura, F. Cazalis, E. R. Stover, and R. A. Poldrack, The neural basis of task switching changes with skill acquisition, Frontiers in Human Neuroscience, vol.26, issue.e47
DOI : 10.1523/JNEUROSCI.3109-05.2006

F. I. Karahanolu, C. Caballero-gaudes, F. Lazeyras, and D. Van-de-ville, Total activation: fMRI deconvolution through spatio-temporal regularization, NeuroImage, vol.73, pp.121-615, 2013.
DOI : 10.1016/j.neuroimage.2013.01.067

S. Lazebnik, C. Schmid, and J. Ponce, A sparse texture representation using local affine regions IEEE transactions on pattern analysis 620 and machine intelligence, pp.1265-1278, 2005.
DOI : 10.1109/tpami.2005.151

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.8788

J. Mouro-miranda, K. J. Friston, and M. Brammer, Dynamic discrimination analysis: A spatial???temporal SVM, NeuroImage, vol.36, issue.1, pp.88-99, 2007.
DOI : 10.1016/j.neuroimage.2007.02.020

J. A. Mumford, B. O. Turner, F. G. Ashby, and R. A. Poldrack, Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses, NeuroImage, vol.59, issue.3, pp.2636-2643
DOI : 10.1016/j.neuroimage.2011.08.076

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251697

K. A. Norman, S. M. Polyn, G. J. Detre, and 6. J. Haxby, Beyond mind-reading: multi-voxel pattern analysis of fMRI data, Trends in Cognitive Sciences, vol.10, issue.9, 2006.
DOI : 10.1016/j.tics.2006.07.005

F. Pedregosa, M. Eickenberg, P. Ciuciu, B. Thirion, and A. Gramfort, Data-driven HRF estimation for encoding and decoding models, NeuroImage, vol.104, pp.209-220, 2015.
DOI : 10.1016/j.neuroimage.2014.09.060

URL : https://hal.archives-ouvertes.fr/hal-00952554

S. Smith, C. Jenkinson, K. Beckmann, M. Miller, and . Woolrich, Meaningful design and contrast estimability in FMRI, NeuroImage, vol.34, issue.1, pp.127-136, 2007.
DOI : 10.1016/j.neuroimage.2006.09.019

B. O. Turner, J. A. Mumford, R. A. Poldrack, and F. G. Ashby, Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs, NeuroImage, vol.62, issue.3, pp.1429-1438
DOI : 10.1016/j.neuroimage.2012.05.057

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408801

G. Varoquaux and B. Thirion, How machine 655 learning is shaping cognitive neuroimaging, 2014.
DOI : 10.1186/2047-217x-3-28

URL : http://doi.org/10.1186/2047-217x-3-28