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Abstract—Rating prediction is a key task of e-commerce
recommendation mechanisms. Recent studies in social recom-
mendation enhance the performance of rating predictors by
taking advantage of user relationships. However, these prediction
approaches mostly rely on user personal information which is a
privacy threat.

In this paper, we present dTrust, a simple social recommen-
dation approach that avoids using user personal information.
It relies uniquely on the topology of an anonymized trust-user-
item network that combines user trust relations with user rating
scores. This topology is fed into a deep feed-forward neural
network. Experiments on real-world data sets showed that dTrust
outperforms state-of-the-art in terms of Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) scores for both warm-
start and cold-start problems.

Index Terms—social recommendation, social network analysis
and mining, deep learning, trust, e-commerce

I. INTRODUCTION

Modern e-commerce systems offer buyers a huge number
of items [1] and a typical user experiences difficulties in
evaluating the alternative items [2]. This is known as the infor-
mation overload problem [3]. Recommender systems, defined
as “software tools and techniques that provide suggestions for
items that are most likely of interest to a particular user” [2],
play an important role in modern e-commerce systems to cope
with the information overload problem [4].

In this paper, we focus on e-commerce systems that inte-
grate rating mechanisms where a user can provide a rating
score to an item. We consider the five-star rating systems [5]
where rating scores range from 1 (lowest) to 5 (highest). A
rating score represents the preference of a user on a particular
item [5]. We aim predicting future item rating scores provided
by users and recommend users only highly rated items. The
task is called item-rating prediction, or rating prediction.

Based on their underlying rating prediction solutions, rec-
ommender systems can be roughly divided into two categories:
traditional recommender systems which do not consider user
social relations and social recommender systems based on the
social information to improve accuracy of predicting values
[6].

Traditional recommender systems are mostly based on user-
item rating matrix [7]. In a user-item matrix R, the value of a
cell rij represents the rating score the user i gave to the item

Fig. 1: A trust-user-item network.

j. A critical problem of traditional recommender systems is
that they usually fail with cold-start problem, i.e. when facing
new users or items in the system [6], [8]. The main reason
is the sparsity of the dataset [9]: the number of items that a
user can consume is typically very small compared to the total
number of items [8]. Therefore, in the face of a new user or
item, the recommender does not have enough information for
prediction.

Traditional recommender systems do not take relationship
between users into consideration. Studies [10], [11], [8] sug-
gested that user opinions are influenced by not only their own
preferences but also their trusted friends. Social recommen-
dation attracted a lot of attention in recent studies [6], [8],
[12] and several e-commerce systems tried to leverage user
social information to improve the quality of their recommender
systems [11], [13].

Social recommendation relies on information on user rela-
tionship in addition to user-item rating. Users declared trust
and distrust opinions on other users compose a trust network.
Integration of users trust network with the rating scores given
by users to items leads to the trust-user-item network. An
example of such a trust-user-item network is shown in Figure
1 where the task of the rating predictor is to predict the rating
score Carol will give to Item 2.

In fact, negative links are available in some particular
networks such as Epinions or Slashdot [14], [15] but they are



missing in most popular social networks [16]. Furthermore,
even if these negative links are available, they are usually
hidden from public [17] as they might discourage users to
participate to the network. Many users do not want to reveal
their negative opinions on others. For the sake of generality,
we consider only positive links in this study. The elimination
of negative links is consistent with other studies [8], [12].

In this paper we propose dTrust, a rating prediction solution
in trust-user-item networks that satisfies the following require-
ments:

• It should scale well for large networks. In fact, several
existing solutions that perform very well at small-scale
feature a high time complexity when used in large net-
works [18].

• It should perform well in cold-start problem.
• It should be simple enough to be implemented in real-

world systems. Simplicity is indeed an important re-
quirement. For instance, the winning solution of Netflix
competition was not implemented into Netflix system due
to its high complexity [19].

• It should not use personal information. Several studies
[15], [16] claimed that predictions can be made easier if
we can access user personal information such as trading
history, gender, income and location. However, due to
raising concerns about privacy, this information should
not be used [8].

• It should not use information about the products bought
by users. In many scenarios, users do not want to publicly
reveal the products they are interested in.

Many existing social recommendation techniques rely on
a predefined model. These models are defined based on
the researchers experience and require an intensive manual
engineering. Moreover, these approaches usually require a time
consuming preprocessing phase such as computation of global
trust [20], execution of a Principal Component Analysis (PCA)
[21] or finding all the paths between two nodes to calculate
their similarity [22]. These calculations might be feasible for
a small network graph, but not for a large graph dataset [18].

In this paper, we present a rating prediction approach for
trust networks that relies on deep learning [23]. Our solution
relies on a multi-layer neural network for predicting the rating
score, being inspired by universal approximation theorem [24]
which stated that a multi-layer neural network can approximate
any function at any precision level. However, rather than
mimicking a specific existing function, in our solution the
neural network creates its own function.

In our solution the input data provided to the multi-layer
neural network is extracted from the trust-user-item network
and consists of the relationships between users and items
and of the trust relationships between users associated with
the time the links were established. In order to preserve
user privacy, each user and product is assigned an unique
and random ID and the input data set contains uniquely
relationships between these IDs. Therefore, it is impossible
to know which item is recommended to which user.

The advantages of our solution are:

• It does not require a preprocessing step because the raw
input data is directly fed into the neural network model.

• It is simple and easy to be implemented.
• It does not reveal any personal information of users or

details about their products.
• It outperforms other state-of-the-art approaches in both

warm-start and cold-start predictions on real-world
datasets.

The paper is organized as follows. We describe existing
techniques for item-rating prediction problem in Section II.
We motivate our solution based on deep learning and describe
our model in Section III. We present the experiments we
performed in Section IV. Section V discusses the results of our
experiments. Finally, Section VI presents concluding remarks.

II. RELATED WORK

As briefly mentioned in the previous section, recommender
systems could be divided into two groups: traditional rec-
ommender systems, which do not consider the relationship
between users, and social recommender systems, which take
the relationship between users into consideration [6].

Traditional recommender systems can be divided into three
sub-categories: content-based, collaborative filtering based and
hybrid ones [6], [11]. Content based recommender systems
rely on the idea that users tend to like those items which are
similar to the items they liked in the past. In collaborative
filtering based recommender systems, the score of a particular
item I rated by a particular user U is predicted as the weighted
average of similar users (user-oriented), the weighted average
rating of this user U on similar items (item-oriented), or based
on patterns computed with machine learning techniques. The
hybrid approach is a combination of content and collaborative
filtering approaches, by adding content based features to
collaborative filtering model, or vice versa [6].

Collaborative filtering (CF) is the most popular recom-
mender system technique today [25], [26], but it usually fails
with cold-start problem. There are several research studies to
improve the performance of CF in cold-start problem, such as
combining multiple CF techniques [27] or performing CF on
a small cluster rather than the entire graph [28].

In opposition to traditional recommender systems, social
recommender systems take into account user social relation-
ships. Social relationships are defined as trust relations, friend-
ships, memberships or following relations [29]. As suggested
by Guha et al. [14], if Alice distrusts Bob, Alice could deny
all the judgments made by Bob, even if these two users are
personally similar. It is well known in social recommendation
research that the decisions of users are influenced by their
social status and relationship [6], [10], [30].

One of the first approaches in social recommendation re-
search is to replace “similar” users in traditional recommenda-
tion techniques by “related” users. This means that prediction
of rating scores a particular user gave to an item is not based
on other similar users, but on the connected friends of this
user [17]. TidalTrust [31] and MoleTrust [32] are based on
this mechanism.



Several research works claimed that users could trust other
similar users on some topics, but not in a general context.
For instance, Alice could trust Bob in selecting ingredients as
Bob is a cooking expert, but Alice may not trust Bob in setting
up a new computer system [33]. Tang et al. [33] designed a
multi-faceted trust with latent factor model [34] where two
users have different trust relationships on different domains.
This multi-faceted trust was used to predict trust relationships
and item-rating in trust-based recommender systems such as
Epinions and Ciao.

Many traditional approaches in recommender system re-
search assume static user social relationships and preferences
[14]. However, user relationships and preferences may change
over time.

Tang et al. [35] used neural networks to analyze sentiments
on reviews users gave on products and then used sentiment
scores to predict future user ratings. Ma et al. [36] presented
an approach that takes into account both user preferences and
sentiments to predict the rating score. Authors used a lexicon-
based approach for sentiment analysis of user reviews. Kim
and Phalak [37] suggested studying user trust relationships
based on ratings of user reviews.

Wang et al. [4] proposed to distinguish between strong
and weak ties and to integrate the strength of these ties into
Social Matrix Factorization (SMF) technique [38]. The up-
dated model called Personalized Social Tie Preference Matrix
Factorization (PTPMF) is presented in [8] wherein authors
considered the personalized preference over the tie strength.

Mei et al. [39] proposed a trustee-influence based trust
model where a trustee activeness or trustworthiness is used
to determine trust relationships. Activeness is defined as the
number of ratings made by a user, and trustworthiness is
defined as the number of trustors the user has. The proposed
trust model is incorporated into a memory-based and matrix
factorization recommender system.

The above mentioned social recommendation approaches
rely on manually predefined features for trust prediction.
Approaches using manual feature engineering are critical as
they rely on researchers experience. Deng et al. [9] proposed
using deep autoencoders for automatic feature selection. As
opposed to this approach that used deep learning for feature
selection, our proposed approach uses deep learning for the
entire prediction process.

Similar to our work, Covington et al. [40] also used
multi-layer feed-forward neural networks for recommendation
service in YouTube. However, this approach requires data
preprocessing such as vector embedding, while our solution
simply takes the raw data as input without the need of a
preprocessing step.

One of the major issues of recommender systems is the
cold-start problem, i.e. dealing with new users or items. Most
of traditional recommender systems rely on the knowledge
of existing users or items and fail in cold start problem [6].
Our experiments show that our approach can deal with this
problem.

III. LEARNING MODEL

A. Problem Definition

We define the problem as follows. Given a list of users U ,
a list of items I , a |U | × |I| user-item rating matrix R and a
|U | × |U | user-user trust relation matrix T , where the matrices
R and T have missing elements, the task is to predict missing
rating scores in the matrix R.

B. Solution Overview

As we described in Section II, several approaches for item-
rating prediction using trust information have been proposed.
The input of the existing algorithms is composed of the user-
item rating matrix and user-user relation matrix. Hence, we can
define the predicting rating score by means of the function f̂
as follows:

r̂i,j = f̂(R, T, i, j) (1)

wherein r̂i,j is the predicting rating score from user Ui to the
item Ij , where Ui ∈ U , with 1 ≤ i ≤ |U | and Ij ∈ I with
1 ≤ j ≤ |I|. The definition of the function f̂ depends on
particular approaches. We denote the actual rating score from
Ui to Ij as rij and the theoretical perfect predicting function
as f .

Our approach is inspired by the universal approximation
theorem [24]. Originally the theorem stated that a feed-forward
neural network can approximate any continuous function by
using a bounded activation function. Recent studies proved that
the universal approximation property of a multi-layer feed-
forward neural network holds for unbounded activation func-
tion such as the rectifier function we used in this paper [41].
Studies also proved that a neural network can approximate
a discontinuous function [42], and in practice the distinction
between continuous and discontinuous functions is not an
important factor for the approximation capacity of a neural
network [43]. The approximation theorem states that, for any
ε > 0, we are able to construct a multi-layer feed-forward
neural network F such that:

|F (R, T, i, j)− f̂(R, T, i, j)| < ε,

∀i, j, 1 ≤ i ≤ |U |, 1 ≤ j ≤ |I| (2)

Therefore, we argue that, if the function f̂ was manually
defined in previous rating prediction studies, a multi-layer
neural network can also define this function. Our proposed
approach has a low development cost. In fact, we do no try to
approximate a particular existing function, but let the neural
network build its own function. As we will see in the following
sections, the multi-layer neural network can predict the rating
score better than state-of-the-art algorithms.

Furthermore, theoretically, if the function f exists, i.e. if
there is a perfect predictor that predicts correctly all the time
the rating score, a multi-layer feed-forward neural network can
approximate this f at an arbitrary precision level.



C. Deep Neural Network Model

In this subsection we motivate the selection of deep neural
network model for our proposed solution and we describe this
model.

Studies addressed several important properties of trust-user-
item networks:

• Large-scale: Modern trust-user-item networks contain
millions or billions of users and products [16].

• Sparsity: The trust-user-item networks are known as very
sparse graphs, i.e. the number of established links is
very small compared to the number of possible links
[15]. Indeed, these networks usually contain millions or
billions of nodes while a typical user can establish several
hundreds of links.

• Imbalance: The social network data is also known as
imbalanced data, as users generally establish more posi-
tive reviews than negative reviews [6], i.e. the number of
rating scores 4 or 5 is much higher than the number of
rating scores 1 or 2.

In order to address the above challenges, we based our
solution on deep learning models due to their following
advantages [44]:

• They can learn complex nonlinear relationships between
input and output data.

• They can learn without or with manual feature engineer-
ing, which is considered as one of the most difficult tasks
in machine learning [45].

• They can scale well with a huge training set.
• They can learn well with unbalanced datasets and incor-

rect labelled data.

In what follows we briefly describe basic notions about deep
neural networks (DNN) for the rating prediction problem. An
artificial neural network includes at least one input and one
output layer, and optionally one or many hidden layers where
each layer includes one or many neurons. An artificial neural
network with multiple hidden layers is called deep neural
network, but so far there is not yet a standard definition of the
minimum required number of hidden layers for an artificial
neural network to be considered deep [46]. We follow [44],
[47] by considering neural networks with at least two hidden
layers as being deep learning models.

We visualize a DNN in Figure 2. The kth layer computes
an output vector hk using the output hk-1 of the previous layer,
starting with the input layer x = h0 as in Equation 3, where
bk is the offset vector and W k is the matrix of weights.

hk = f(bk +W khk-1) (3)

The function f in Equation 3 is called activation function,
which decides how each neuron calculates and transfers the
signal to the neurons in subsequent layer. The advantage of
deep neural networks is that, the calculation in deep neural net-
works usually requires simple mathematical activation func-
tions. A popular activation function is called rectifier, which

Fig. 2: A multi-layer feed-forward neural network.

is the most simple non-linear function. Rectifier function is
defined as:

rectifier(x) = max(0, x) (4)

Even if the rectifier function is very simple, its prediction
quality is very good [48], [40]. Due to its simplicity, the
rectifier activation function has the advantage that it can be
faster computed compared to other activation functions such
as tanh or sigmoid. The rectifier function is the mostly used
activation function today [49].

As we observe in Equation 3, training and applying deep
neural networks could be considered as a series of matrix cal-
culation. These operations can be calculated efficiently using
parallel computing techniques, such as Hadoop & MapReduce
[50] or GPU-computing technology such as CUDA [51].

Originally, neural networks are designed to process numer-
ical input and output data. Indeed, the input and output of
activation functions are numerical values. However, in item-
rating prediction, users and items are categorical values. In
order to apply deep neural networks in item-rating prediction,
we need to convert categorical values to numerical values by
using “one-hot encoding”. The idea of “one-hot encoding” is
to transfer categorical values into a matrix, where each row
contains a single element with value 1, all other elements
having the value 0. For instance, the one-hot encoding for
the three items iPhone, iPad and iPod corresponds to the three
vectors [1,0,0], [0,1,0] and [0,0,1] respectively.

The issue of one-hot encoding is that it increases data
dimension dramatically, which leads to “curse of dimension-
ality”. Practically, many supervised algorithms fail in high
dimensional space. In order to reduce the input size and allow
the neural network to be trained effectively, we used feature
hashing technique [52] where input data is fed to a hash
function to reduce the number of data dimensions.

In this study we do not feed the exact numeric values of
user ID or item ID into the model, but the encoded values of
these IDs, avoiding to reveal private information about users
and items.

Selecting the number of hidden layers for DNN models
is a very difficult task [40]. Learning complex data structure
usually requires multiple hidden layers, but when the models



become deeper, “it becomes more difficult to obtain good
generalization” [53]. In fact, this problem is still an open
theoretical problem [54]. We follow the practical approach
where we choose the number of hidden layers in a DNN
model by “just keep adding layers until the test error does
not improve anymore” [55].

IV. EXPERIMENTS

In this section we present details about our experiments
including adaptation of input data for DNN models, the
dataset, description of the implementation, the metrics used
for comparison with other baseline models and the results
obtained.

A. Data Preparation

In this section we describe how information about a trust-
user-item network containing positive links is fed into a DNN
model.

The trust-user-item network is created over time, when links
are added one by one. We can represent the trust-user-item
network shown in Figure 1 as in Table I that contains user
ratings on products over time and in Table II that contains the
positive link information between users over time.

User Item Time Rating Score
Bob Item 1 2010 3

Carol Item 3 2012 2
Alice Item 3 2016 5

TABLE I: User-item relations.

Trustor Trustee Time
Bob Alice 2011
Alice Carol 2013
Alice Bob 2015

TABLE II: User-user relations.

To feed the input data into the DNN model, we combine
Table I and Table II into one single table as shown in Table
III. In this combined table, we consider positive links between
users having the highest rating score of 5.

Link Source Link Destination Time Link Value
Bob Item 1 2010 3

Carol Item 3 2012 2
Alice Item 3 2016 5
Bob Alice 2011 5
Alice Carol 2013 5
Alice Bob 2015 5

TABLE III: User-user-item table.

The final model for rating prediction is illustrated in Figure
3. Note that the figure displays only few connections between
layers, but our experiments use the fully connected DNN. The
Link Source and Link Destination are fed as one-hot encoding
vectors using hash function for dimension reduction [52].

Feeding raw data directly into a fully connected DNN was
also successfully used in different tasks such as classification

Fig. 3: Rating prediction using DNN. ReLU stands for Recti-
fied Linear Unit.

in computer vision or graph-based data [54], [47]. An advan-
tage of using DNN is that the training time is much shorter
than other complex algorithms such as ConvNet used for graph
analysis [47].

B. Dataset

We evaluate our solution using the following three real-
world datasets collected from Epinions1 and Ciao2 review
websites where users can rate items and declare trust on other
users:

• Epinions1: The dataset available at http://www.trustlet.
org/ is collected and presented in [32].

• Epinions2 & Ciao: The two datasets available at http:
//www.jiliang.xyz/trust.html are collected and presented
in [33].

Statistics about these datasets are presented in Table IV. All
these datasets are organized in the format discussed in Section
IV-A. Each dataset is composed of two files: one containing
users rating score on items and one containing trust relations
between users.

Epinions1 Epinions2 Ciao
# of Users 49,290 22,166 12,375

# of Products 139,738 296,277 106,797
# of Rating 664,824 922,267 284,086
# of Links 487,181 355,813 237,350

First Rating on 1999 1999 2000
Last Rating on 2003 2011 2011
Mean Rating 3.99 4.05 4.21

TABLE IV: Statistics of datasets

The distributions of rating scores in the three datasets are
displayed in Figure 4. We can see that all datasets are imbal-

1http://epinions.com/
2http://ciao.com/



anced: most of established rating scores are 4 or 5. Moreover,
the distributions of rating scores in the three datasets are
similar even the three datasets are collected at different times
and from different websites.

Fig. 4: Distribution of Rating Score in the three datasets.

We present in Figure 5 the distributions in the Epinions2
dataset of the number of trustors that trust a trustee and the
number of trustees that are trusted by a trustor. Most of the
time, a trustor trusts four trustees, and similarly a trustee
is trusted by four trustors. Similar distributions are obtained
throughout the other datasets.

The datasets were established over a long time period.
However, the independent and identical distribution (i.i.d.)
assumption holds, i.e. distribution of rating scores does not
change during the period. This means that the training and
testing datasets are pulled out from a same distribution. As
an example, we displayed the distribution of rating scores
in Epinions2 dataset over 11 years in Figure 6. We can
see that the distribution does not change over time. Similar
distributions are found in the other two datasets.

C. Implementation

We implemented our solution in R language3. We used h2o
package4 for building and training deep neural networks. h2o
package performs deep neural network training on Hadoop
and MapReduce 5.

We evaluated the performance of DNN models for general
item-rating prediction, warm-start and cold-start problems.
We used the same definition of cold-start problem as in [15]:
cold-start problem assumes that items or users appear on the
testing set, but not in the training set. The definition of warm-
start is simply the reversion of cold-start problem.

Existing solutions use different division strategies for the
training and testing datasets. In order to compare our approach
with existing solutions, we performed two different experi-
ments using the two main training/testing division strategies.

3https://www.r-project.org/
4http://www.h2o.ai/
5The code and data of our experiments are available at https://github.com/

vinhqdang/dTrust

In the first experiment we employed the “sequential division”
where we train the model using historical data and predict
future data [33], [15]. In sequence, the testing data can be
divided further into two parts that are the cold-start part and
warm-start part. In the second experiment, we use leave-one-
out cross validation. In this validation method, we divided the
training dataset (just the user-item table) into equal k parts.
Then the training and testing steps are repeated k times. At
each time, we consider a different part as the testing data and
the remaining k − 1 parts as the training data. This method
was used in [56], [30]. We compared the performance of
our DNN models with the performance metrics presented in
corresponding papers.

As suggested by Bengio [55], we performed the prediction
on item-rating by using different neural network models with
an increasing number of hidden layers. The number of neurons
in each layer is optimized by using grid search. However,
we found that a small change on number of neurons does
not make a significant effect on the performance of the deep
neural network models. We used the pyramid architecture [23],
meaning that the number of neurons is reduced in deeper
layers. The same architecture is used in previous studies [40].
We started with 2048 neurons in the first layer, then reduced
the number of neurons by half in next layer, i.e. we used 1024
neurons in the second layer, then 512 neurons in the third layer
if this layer was included and so on.

We used adaptive learning rate with the initial value as
0.001. We set the output size of the feature hashing function
as 5, 000.

D. Metrics

We used two popular metrics to evaluate the performance
of our solution, which are Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). RMSE and MAE are
considered as suitable metrics for evaluating predicting task
of a recommender system [57].

Both two metrics are defined on two vectors, one is A =
A1, A2, ..., An representing the actual values, and the other
one is P = P1, P2, ..., Pn representing the predicting values
of a predictor on n items.

RMSE =

√∑n
i=1(Ai − Pi)2

n
(5)

MAE =

∑n
i=1 |Ai − Pi|

n
(6)

RMSE punishes the large error more than MAE, therefore
RMSE is more suitable for measuring the performance of
recommender systems [30]. However, we present both metrics
for our results for a comparison with existing studies.

E. Baseline Models

We compare our solution with several state-of-the-art stud-
ies displayed in Table V.

In order to avoid re-implementation of existing solutions
in a non optimal way, we refer to the scores reported in the



(a) Distribution of number of trustors on trustees (b) Distribution of number of trustees on trustors

Fig. 5: Distribution of number of trustors and trustees

Fig. 6: Distribution of rating scores over 11 years in Epinions2
dataset. Each column represents one-year data.

corresponding publications. We set up experiments with the
same settings as reported in the literature and we compared
our solution with published results using the same metrics.

Solution Year Metric Datasets
mTrust [33] 2012 RMSE Epinions2, Ciao

DynFluid [56] 2015 RMSE Epinions2, Ciao
eTrustRec [58] 2015 RMSE Epinions2

DLMF [9] 2016 RMSE Epinions1
Davoudi [7] 2016 RMSE, MAE Epinions2
Costa [59] 2016 RMSE Epinions2, Ciao

TrustSVD [30] 2016 RMSE, MAE Epinions1, Ciao
PTPMF [8] 2017 RMSE, MAE Epinions1

MF-NTPR [39] 2017 RMSE Epinions2

TABLE V: Baseline models used for performance comparison.

Furthermore, we compare our solution with two popular
baseline models:

• Mean: the rating of a product is predicted as the mean
of known previous ratings of this product. For new items
we simply predict the rating score as average rating score
of all other products.

• NN: the nearest neighbor based method which predicts
rating score of a product as the average rating score of

their trusted friends.

F. Results

In this section we present our experimental results. Com-
parison of our approach with corresponding state-of-the-art
models in terms of RMSE and MAE values is presented in
Tables VI, VII, VIII and IX. The values inside parentheses
represent the number of hidden layers we used with dTrust.

Algorithm Warm-start Cold-start All
Mean 1.1054 1.1562 1.1106
NN 1.1092 1.1566 1.1148

dTrust (1) 1.0378 1.0876 1.076
mTrust 1.0566 1.1375 1.0646

eTrustRec2 1.0228 1.0672 1.0272
dTrust (2) 1.0033 1.067 1.022
dTrust (3) 1.005 1.067 1.023
dTrust (4) 1.049 1.13 1.076

TABLE VI: RMSE of different predictors in the first exper-
iment (using historical data to predict future) on Epinions2
dataset.

Algorithm RMSE
Mean 1.17
NN 1.09

MF-NTPR 1.079
dTrust (1) 1.066
DynFluid 1.05
dTrust (2) 1.028
dTrust (3) 1.03
dTrust (4) 1.092

TABLE VII: RMSE in the second experiment (cross-
validation) on Epinions2 dataset.

Figure 7 displays the distribution of predicting error of
dTrust in all experiments with different hidden layers. We can
see that, dTrust with 2 layers provides a sharper prediction
than dTrust with 1 or 3 layers. It means that, while dTrust
with 1 hidden layer is too shallow to capture the relationship
between users and items, dTrust with 3 hidden layers is too



Algorithm Epinions1 Ciao
Mean 1.21 1.06
NN 1.17 1.01

mTrust - 0.97
DynFluid - 0.97

DLMF 1.07 -
[59] 1.16 0.94

TrustSVD 1.043 0.956
dTrust (1) 1.045 0.95
dTrust (2) 1.039 0.93
dTrust (3) 1.049 0.94
dTrust (4) 1.06 0.96

TABLE VIII: RMSE on Epinions1 and Ciao datasets in the
first experiment (using historical data to predict future).

Algorithm Epinions1 Epinions2 Ciao
Mean 0.92 0.89 0.82
NN 0.89 0.88 0.80
[7] - 0.87 -

TrustSVD 0.80 - 0.72
PTPMF 0.82 - -

dTrust (1) 0.82 0.86 0.73
dTrust (2) 0.80 0.87 0.72
dTrust (3) 0.85 0.87 0.73
dTrust (4) 0.89 0.93 0.76

TABLE IX: MAE of different predictors.

deep and the last layer does not contribute much for the
prediction [54].

V. DISCUSSION

Experimental results showed that our deep learning solution
outperforms other existing methods in rating prediction for
both warm-start and cold-start problems.

As we could expect, all approaches performed best in
warm-start problem. The performance is reduced dramatically
if we switch the predicting task to the cold-start problem.
When predicting the entire testing dataset, the RMSE values
are between the RMSE values of cold-start and warm-start
problems. This is explained by the fact that the entire testing
set is a combination of warm-start and cold-start testing sets.

We performed the predicting tasks by different neural
network models with increasing number of hidden layers
as suggested in practice and literature [40]. We found that
the neural networks with two hidden layers perform best
in comparison with other models for the rating prediction
problem that we studied. The result is expected as DNN
models become unstable when more hidden layers are added
[53], leading to the consequence that a DNN model cannot be
extended forever [54].

In order to verify the improvement in predicting item-
rating scores between our deep learning approach and existing
methods, we performed t-test on the prediction errors of
different methods, i.e. we performed t-test on two vectors
E1 and E2, where E1 is the prediction error of dTrust and
E2 is the prediction error of the second best method in each
experiment. All obtained p-values are less than 0.05, so we
confirm the significant improvement of our approach compared
to other methods.

Fig. 7: Distribution of predicting error

Due to the huge size of the testing set in all experiments,
improvements in term of RMSE and MAE are of a small order.
This is, however, an improvement over the state-of-the-art. We
recall that, in Netflix competition, the difference between the
first and second best approaches was only 0.18%. As claimed
in [15], in rating prediction, small absolute improvements in
RMSE can lead to a significant impact on quality of the
top few recommendations which is critical for e-commerce
recommender systems. For example, [34] showed that, the
improvement of 0.0155 on absolute value of RMSE led to
50% relative improvement of top few recommendations.

Besides higher accuracy scores in prediction compared to
state-of-the-art approaches, dTrust also benefits from the fact
that we can feed the data directly into the model without
feature engineering. Feature engineering is a very difficult task
in machine learning which requires a lot of human effort and
expertise [45]. Avoiding this step leads to preprocessing time
improvement.



VI. CONCLUSION

Schwartz [60] claimed that increasing consumer choices can
greatly increment shoppers anxiety. Recommender systems
tackle this issue by suggesting customers few items among
billions of them. Item-rating prediction is a critical issue in
recommender systems.

In this paper, we improve the quality of rating predic-
tion task by combining user relations with user-item rating
data using a deep feed-forward neural network. Experiments
showed the improvement of our method compared to other
existing methods in term of Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). Our experimental results
suggest that given enough training data, deep neural network
models could outperform other solutions based on complex
mathematical models. The solution does not require user
personal information. In fact, the only information required
by dTrust is the topology of the trust-user-item network where
the IDs of users and items can be anonymized.

Our research study demonstrates the potential of using deep
learning in studying user behavior in trust-based online social
networks. Deep learning could also avoid manual feature
engineering, which is currently a standard step required in
machine learning. We plan optimizing the proposed neural
network model and extending it to capture other types of user
behavior.

REFERENCES

[1] P. Grey, “How many products does amazon sell?” December
2015. [Online]. Available: https://export-x.com/2015/12/11/how-many-
products-does-amazon-sell-2015/

[2] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: Introduc-
tion and challenges,” in Recommender Systems Handbook, 2015.

[3] M. M. Azadjalal, P. Moradi, A. Abdollahpouri, and M. Jalili, “A
trust-aware recommendation method based on pareto dominance and
confidence concepts,” Knowl.-Based Syst., vol. 116, pp. 130–143, 2017.

[4] X. Wang, W. Lu, M. Ester, C. Wang, and C. Chen, “Social recommen-
dation with strong and weak ties,” in CIKM. ACM, 2016, pp. 5–14.

[5] C. C. Aggarwal, Recommender Systems: The Textbook. Springer, 2016.
[6] J. Tang, X. Hu, and H. Liu, “Social recommendation: a review,” Social

Netw. Analys. Mining, 2013.
[7] A. Davoudi and M. Chatterjee, “Modeling trust for rating prediction in

recommender systems,” in SIAM MLRec, 2016.
[8] X. Wang, S. C. H. Hoi, M. Ester, J. Bu, and C. Chen, “Learning person-

alized preference of strong and weak ties for social recommendation,”
in WWW. ACM, 2017, pp. 1601–1610.

[9] S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu, “On deep learning for
trust-aware recommendations in social networks,” IEEE TNNLS, 2016.

[10] C. A. Yeung and T. Iwata, “Strength of social influence in trust networks
in product review sites,” in WSDM. ACM, 2011, pp. 495–504.

[11] Y. Li, C. Wu, and C. Lai, “A social recommender mechanism for
e-commerce: Combining similarity, trust, and relationship,” Decision
Support Systems, vol. 55, no. 3, pp. 740–752, 2013.

[12] B. Yang, Y. Lei, J. Liu, and W. Li, “Social collaborative filtering by
trust,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8, pp. 1633–
1647, 2017.

[13] Y. Dou, H. Yang, and X. Deng, “A survey of collaborative filtering
algorithms for social recommender systems,” in SKG. IEEE Computer
Society, 2016, pp. 40–46.

[14] R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of
trust and distrust,” in WWW, 2004.

[15] J. Tang, H. Gao, H. Liu, and A. D. Sarma, “eTrust: understanding trust
evolution in an online world,” in KDD. ACM, 2012, pp. 253–261.

[16] J. Tang, Y. Chang, C. Aggarwal, and H. Liu, “A survey of signed network
mining in social media,” ACM Comput. Surv., 2016.

[17] P. Massa and P. Avesani, “Trust-aware recommender systems,” in
RecSys. ACM, 2007, pp. 17–24.

[18] L. Duan, C. Aggarwal, S. Ma, R. Hu, and J. Huai, “Scaling up link
prediction with ensembles,” in WSDM. ACM, 2016, pp. 367–376.

[19] N. T. Blog, “Netflix recommendations: Beyond the 5 stars,” April
2012. [Online]. Available: https://medium.com/netflix-techblog/netflix-
recommendations-beyond-the-5-stars-part-1-55838468f429

[20] W.-P. Lee and C.-Y. Ma, “Enhancing collaborative recommendation
performance by combining user preference and trust-distrust propagation
in social networks,” Knowledge-Based Systems, 2016.
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