P. Grey, How many products does amazon sell? Available: https://export-x.com, 2015.

F. Ricci, L. Rokach, and B. Shapira, Recommender Systems: Introduction and Challenges, Recommender Systems Handbook, 2015.
DOI : 10.1007/978-1-4899-7637-6_1

M. M. Azadjalal, P. Moradi, A. Abdollahpouri, and M. Jalili, A trust-aware recommendation method based on Pareto dominance and confidence concepts, Knowledge-Based Systems, vol.116, pp.130-143, 2017.
DOI : 10.1016/j.knosys.2016.10.025

X. Wang, W. Lu, M. Ester, C. Wang, and C. Chen, Social Recommendation with Strong and Weak Ties, Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM '16, pp.5-14, 2016.
DOI : 10.1145/2661829.2661998

C. C. Aggarwal, Recommender Systems: The Textbook, 2016.
DOI : 10.1007/978-3-319-29659-3

J. Tang, X. Hu, and H. Liu, Social recommendation: a review, Social Netw. Analys. Mining, 2013.
DOI : 10.1145/1772690.1772790

A. Davoudi and M. Chatterjee, Modeling trust for rating prediction in recommender systems, SIAM MLRec, 2016.

X. Wang, S. C. Hoi, M. Ester, J. Bu, and C. Chen, Learning Personalized Preference of Strong and Weak Ties for Social Recommendation, Proceedings of the 26th International Conference on World Wide Web, WWW '17, pp.1601-1610, 2017.
DOI : 10.1145/2072298.2072315

S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu, On Deep Learning for Trust-Aware Recommendations in Social Networks, IEEE Transactions on Neural Networks and Learning Systems, vol.28, issue.5, 2016.
DOI : 10.1109/TNNLS.2016.2514368

C. A. Yeung and T. Iwata, Strength of social influence in trust networks in product review sites, Proceedings of the fourth ACM international conference on Web search and data mining, WSDM '11, pp.495-504, 2011.
DOI : 10.1145/1935826.1935899

Y. Li, C. Wu, and C. Lai, A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship, Decision Support Systems, vol.55, issue.3, pp.740-752, 2013.
DOI : 10.1016/j.dss.2013.02.009

B. Yang, Y. Lei, J. Liu, and W. Li, Social Collaborative Filtering by Trust, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.8, pp.1633-1647, 2017.
DOI : 10.1109/TPAMI.2016.2605085

Y. Dou, H. Yang, and X. Deng, A Survey of Collaborative Filtering Algorithms for Social Recommender Systems, 2016 12th International Conference on Semantics, Knowledge and Grids (SKG), pp.40-46, 2016.
DOI : 10.1109/SKG.2016.014

R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins, Propagation of trust and distrust, Proceedings of the 13th conference on World Wide Web , WWW '04, 2004.
DOI : 10.1145/988672.988727

J. Tang, H. Gao, H. Liu, and A. D. Sarma, eTrust, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pp.253-261, 2012.
DOI : 10.1145/2339530.2339574

J. Tang, Y. Chang, C. Aggarwal, and H. Liu, A Survey of Signed Network Mining in Social Media, ACM Computing Surveys, vol.49, issue.3, 2016.
DOI : 10.1109/ICCP.2010.5606460

P. Massa and P. Avesani, Trust-aware recommender systems, Proceedings of the 2007 ACM conference on Recommender systems , RecSys '07, pp.17-24, 2007.
DOI : 10.1145/1297231.1297235

]. L. Duan, C. Aggarwal, S. Ma, R. Hu, and J. Huai, Scaling up Link Prediction with Ensembles, Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM '16, pp.367-376, 2016.
DOI : 10.1145/2684822.2685295

N. T. Blog, Netflix recommendations: Beyond the 5 stars Available: https://medium.com/netflix-techblog/netflix- recommendations-beyond-the-5-stars-part-1-55838468f429, 2012.

W. Lee and C. Ma, Enhancing collaborative recommendation performance by combining user preference and trust-distrust propagation in social networks, Knowledge-Based Systems, vol.106, 2016.
DOI : 10.1016/j.knosys.2016.05.037

M. Pozo, R. Chiky, and E. Métais, Enhancing Collaborative Filtering Using Implicit Relations in Data, Trans. Comput. Collective Intelligence, vol.1, issue.4, 2016.
DOI : 10.1080/15427951.2004.10129096

URL : https://hal.archives-ouvertes.fr/hal-01314918

W. Zhang, B. Wu, and Y. Liu, Cluster-level trust prediction based on multi-modal social networks, Neurocomputing, vol.210, 2016.
DOI : 10.1016/j.neucom.2016.01.108

H. Wang, B. Raj, and E. P. Xing, On the origin of deep learning, 1702.

K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, vol.4, issue.2, 1991.
DOI : 10.1016/0893-6080(91)90009-T

I. Barjasteh, R. Forsati, D. Ross, A. Esfahanian, and H. Radha, Cold-Start Recommendation with Provable Guarantees: A Decoupled Approach, IEEE Transactions on Knowledge and Data Engineering, vol.28, issue.6, pp.1462-1474, 2016.
DOI : 10.1109/TKDE.2016.2522422

J. Liu, Y. Jiang, Z. Li, X. Zhang, and H. Lu, Domain-sensitive recommendation with user-item subgroup analysis, ICDE, 2016.

E. Q. Da-silva, C. G. Camilo-junior, L. M. Pascoal, and T. C. Rosa, An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering, Expert Systems with Applications, vol.53, pp.204-218, 2016.
DOI : 10.1016/j.eswa.2015.12.050

C. Liao and S. Lee, A clustering based approach to improving the efficiency of collaborative filtering recommendation, Electronic Commerce Research and Applications, vol.18, 2016.
DOI : 10.1016/j.elerap.2016.05.001

I. King, M. R. Lyu, and H. Ma, Introduction to social recommendation, Proceedings of the 19th international conference on World wide web, WWW '10, 2010.
DOI : 10.1145/1772690.1772927

G. Guo, J. Zhang, and N. Yorke-smith, A Novel Recommendation Model Regularized with User Trust and Item Ratings, IEEE Transactions on Knowledge and Data Engineering, vol.28, issue.7, pp.1607-1620, 2016.
DOI : 10.1109/TKDE.2016.2528249

J. Golbeck, Combining Provenance with Trust in Social Networks for Semantic Web Content Filtering, IPAW, 2006.
DOI : 10.1007/11890850_12

P. Massa and P. Avesani, Trust Metrics on Controversial Users, International Journal on Semantic Web and Information Systems, vol.3, issue.1, 2007.
DOI : 10.4018/jswis.2007010103

J. Tang, H. Gao, and H. Liu, mTrust, Proceedings of the fifth ACM international conference on Web search and data mining, WSDM '12, pp.93-102, 2012.
DOI : 10.1145/2124295.2124309

Y. Koren, Factorization meets the neighborhood, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, 2008.
DOI : 10.1145/1401890.1401944

D. Tang, B. Qin, T. Liu, and Y. Yang, User modeling with neural network for review rating prediction, IJCAI, 2015.

X. Ma, X. Lei, G. Zhao, and X. Qian, Rating prediction by exploring users preference and sentiment, Multimedia Tools and Applications, pp.1-20, 2017.

Y. A. Kim and R. Phalak, A trust prediction framework in rating-based experience sharing social networks without a Web of Trust, Information Sciences, vol.191, 2012.
DOI : 10.1016/j.ins.2011.12.021

J. Mei, H. Yu, Z. Shen, and C. Miao, A social influence based trust model for recommender systems, Intelligent Data Analysis, vol.191, issue.2, pp.263-277, 2017.
DOI : 10.1007/978-3-319-13191-7_29

P. Covington, J. Adams, and E. Sargin, Deep Neural Networks for YouTube Recommendations, Proceedings of the 10th ACM Conference on Recommender Systems, RecSys '16, pp.191-198, 2016.
DOI : 10.1145/2645710.2645724

S. Sonoda and N. Murata, Neural network with unbounded activation functions is universal approximator, Applied and Computational Harmonic Analysis, vol.43, issue.2, 2015.
DOI : 10.1016/j.acha.2015.12.005

B. Llanas, S. Lantarón, and F. J. Sáinz, Constructive Approximation of Discontinuous Functions by Neural Networks, Neural Processing Letters, vol.3, issue.3, pp.209-226, 2008.
DOI : 10.1109/TNN.2002.1000141

M. A. Nielsen, Neural networks and deep learning, 2015.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

A. Ng, Machine learning and ai via brain simulations, 2013.

J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, vol.61, pp.85-117, 2015.
DOI : 10.1016/j.neunet.2014.09.003

T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, p.2017

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, ICML. Omnipress, pp.807-814, 2010.

N. Buduma and N. Locascio, Fundamentals of Deep Learning: Designing Next-generation Machine Intelligence Algorithms. O'Reilly Media, 2017.

J. Dean and S. Ghemawat, MapReduce, OSDI. USENIX Association, pp.137-150, 2004.
DOI : 10.1145/1327452.1327492

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran et al., cudnn: Efficient primitives for deep learning, 1410.

K. Q. Weinberger, A. Dasgupta, J. Langford, A. J. Smola, and J. Attenberg, Feature hashing for large scale multitask learning, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553516

Y. Bengio, Learning Deep Architectures for AI, Machine Learning, pp.1-127, 2009.
DOI : 10.1561/2200000006

I. Goodfellow, Y. Bengio, A. Courville, and D. Learning, How can I estimate the number of neurons and layers? Available: https://www.quora.com/Artificial-Neural- Networks-How-can-I-estimate-the-number-of-neurons-and-layers, 2013.

H. Zheng and J. Wu, DynFluid: Predicting Time-Evolving Rating in Recommendation Systems via Fluid Dynamics, 2015 IEEE Trustcom/BigDataSE/ISPA, pp.1-8, 2015.
DOI : 10.1109/Trustcom.2015.350

A. Gunawardana and G. Shani, A survey of accuracy evaluation metrics of recommendation tasks, Journal of Machine Learning Research, vol.10, pp.2935-2962, 2009.

J. Tang, H. Gao, A. D. Sarma, Y. Bi, and H. Liu, Trust Evolution: Modeling and Its Applications, IEEE Transactions on Knowledge and Data Engineering, vol.27, issue.6, pp.1724-1738, 2015.
DOI : 10.1109/TKDE.2014.2382576

G. Costa and R. Ortale, Model-Based Collaborative Personalized Recommendation on Signed Social Rating Networks, ACM Transactions on Internet Technology, vol.16, issue.3, pp.1-20, 2016.
DOI : 10.1145/2505515.2505533

B. Schwartz, The Paradox of Choice, 2004.
DOI : 10.1006/obhd.1997.2730